
Dynamic Sparse Learning: A Novel Paradigm for
Efficient Recommendation

Shuyao Wang

School of Data Science, University of

Science and Technology of China

shuyaowang@mail.ustc.edu.cn

Yongduo Sui

School of Data Science, University of

Science and Technology of China

syd2019@mail.ustc.edu.cn

Jiancan Wu

School of Information Science and

Technology, University of Science and

Technology of China

wujcan@gmail.com

Zhi Zheng

School of Data Science, University of

Science and Technology of China

zhengzhi97@mail.ustc.edu.cn

Hui Xiong
∗

The Thrust of Artificial Intelligence,

The Hong Kong University of Science

and Technology (Guangzhou)

The Department of Computer Science

and Engineering, The Hong Kong

University of Science and Technology

xionghui@ust.hk

ABSTRACT
In the realm of deep learning-based recommendation systems, the

increasing computational demands, driven by the growing number

of users and items, pose a significant challenge to practical deploy-

ment. This challenge is primarily twofold: reducing the model size

while effectively learning user and item representations for efficient

recommendations. Despite considerable advancements in model

compression and architecture search, prevalent approaches face

notable constraints. These include substantial additional compu-

tational costs from pre-training/re-training in model compression

and an extensive search space in architecture design. Additionally,

managing complexity and adhering to memory constraints is prob-

lematic, especially in scenarios with strict time or space limitations.

Addressing these issues, this paper introduces a novel learning

paradigm, Dynamic Sparse Learning (DSL), tailored for recommen-

dation models. DSL innovatively trains a lightweight sparse model

from scratch, periodically evaluating and dynamically adjusting

each weight’s significance and the model’s sparsity distribution

during the training. This approach ensures a consistent and mini-

mal parameter budget throughout the full learning lifecycle, paving

the way for “end-to-end” efficiency from training to inference. Our

extensive experimental results underline DSL’s effectiveness, sig-

nificantly reducing training and inference costs while delivering

comparable recommendation performance. We give an code link of

our work: https://github.com/shuyao-wang/DSL.
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1 INTRODUCTION
Recommendation systems [44, 45, 57] provide personalized services

for today’s web and have achieved significant success in various

fields, such as e-commerce platforms, medical care [56, 59, 60], edu-

cation [58] and job search [55]. At its core is learning high-quality

representations for users and items based on historical interac-

tion data. The rapidly growing population of users and items on

one hand promotes the demands for large-scale recommender sys-

tems [47], while on the other hand posing great challenges for

model training and inference, such as unaffordable memory over-

heads, computational costs, and inference latency. Hence, efficient

recommendation, i.e., lightweight model, with low costs of training

and inference, is of great need and significance.

Various solutions have been proposed for efficient recommen-

dation, which can be categorized into the following three research

lines, each of which has inherent limitations.

• Knowledge Distillation (KD) [15, 20–23, 42, 50] distills knowl-
edge from a pre-trained large-scale model (i.e., teacher model)

to a compact model (i.e., student model) for efficient inference.

On the one hand, the proceeds of KD mainly lie in the reduction

of inference costs by using the lightweight student model. Yet,

it still needs to train a cumbersome teacher model from scratch,

leaving the overall training cost not reduced. On the other hand,

740

https://github.com/shuyao-wang/DSL
https://doi.org/10.1145/3616855.3635780
https://doi.org/10.1145/3616855.3635780
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616855.3635780&domain=pdf&date_stamp=2024-03-04


WSDM ’24, March 4–8, 2024, Merida, Mexico. Shuyao Wang, Yongduo Sui, Jiancan Wu, Zhi Zheng, & Hui Xiong

Table 1: Comprehensive comparisons with existing efficient recommendation methods.

Method Category

Saving

End-to-end

Budget

controllable

Non-uniform

embedding size

Performance

reservedTraining cost Inference cost Memory

TKD [20] KD ✗ ✓ ✗ ✗ ✓ ✗ ✗

RKD [41] KD ✗ ✓ ✗ ✗ ✓ ✗ ✗

AutoEmb [52] AutoML ✗ ✓ ✗ ✓ ✗ ✓ ✓

ESAPN [26] AutoML ✗ ✓ ✗ ✓ ✗ ✓ ✓

PEP [27] MP ✓ ✓ ✓ ✓ ✗ ✓ ✗

LTH-MRS [46] MP ✗ ✓ ✗ ✗ ✗ ✓ ✓

Ours MP ✓ ✓ ✓ ✓ ✓ ✓ ✓

the knowledge of the teacher models often cannot thoroughly

transfer to the student models [41], usually incurring a large

performance degradation [20, 22].

• Automated Machine Learning (AutoML) [1, 26, 27, 52–54]
aims to search lightweight model architectures in a given search

space via diverse strategies, including gradient-based optimiza-

tion [25, 33], reinforcement learning [27] , or evolutionary al-

gorithms [31]. However, the search space should be manually

predefined with human prior knowledge [1]. In addition, the

complex procedures of optimization and performance estimation

[1] also lead to an unaffordable computational cost.

• Model Pruning (MP) [14, 16, 40, 46, 62] trims down the model

size by removing redundant parameters from the full model. It

aims to find a sparse and lightweight model that can best retain

the performance of the full model. However, it needs to empir-

ically find intriguing sparse embedding tables by an iterative

“train-prune-retrain” pipeline [14, 46], which still suffers from

the expensiveness of the post-training pruning.

We present a clear summary of several representative efforts and

their respective properties in Table 1. Further discussions can be

found in Section 5. Scrutinizing the limitations of these solutions,

they either require model pre-training or complex optimization pro-

cesses of architecture search. Hence, the benefits mainly come from

the inference stage, while greatly increasing the training workload.

In view of that, we aim to design a simple and lightweight learn-

ing paradigm for recommendation models that can simultaneously

trim down the training and inference costs, with comparable per-

formance. By inspecting the design of the conventional models, we

find that most of them impose a constraint on the length of repre-

sentations during model training, that is, embedding each user or

item as a dense vector with a preset dimension (aka., embedding

table). However, in expectation, a flexible model is capable of as-

signing different embedding sizes to diverse users or items based

on the information they carry. Intuitively, users having multiple

interests (or items attracting diverse audiences) should be more

informative than the inactive counterparts, and hence should be rep-

resented with larger dimensions, and vice versa [2, 26, 52]. Hence,

there may exist a large number of redundant weights in the full

embedding table, resulting in an over-parameterized model, which

greatly hinders efficiency. Then a question raises naturally: “Can
we relax the limitation on the embedding size of the model, and let
the model automatically remove or add weights to achieve a dynamic
embedding size during training?”

Towards this end, we propose an end-to-end learning paradigm

for recommendation: Dynamic Sparse Learning (DSL). Specifically,
given a randomly initialized model, DSL first randomly prunes the

model to a predefined budget and trains the sparse model. During

the training process, it periodically adjusts the sparsity distribu-

tion of the model parameters via two dynamic strategies: pruning

and growth. The implemented pruning strategy identifies and elim-

inates weights that have negligible impact on the performance,

thereby effectively reducing redundancy in the model parame-

ters. While the growth process explores the potential informative

weights that can improve the performance, thereby reactivating

important parameters. DSL sticks to a fixed and small budget by

maintaining the same ratio of pruning and growth throughout the

whole training stage, thus effectively reducing both the training

and inference complexity. DSL is a model-agnostic and plug-and-

play learning framework that can be applied to various models.

In contrast to existing efforts in Table 1, it achieves the attractive

prospect of “end-to-end” efficiency from training to inference. We

implement DSL on diverse collaborative recommendation models,

and conduct extensive experiments on benchmark datasets. Experi-

mental results show that DSL can effectively trim down both the

training and inference costs, with comparable performance.

Overall, we make the following contributions:

• Problem: We argue that large-scale recommendation models

usually suffer from high training and inference complexity. Un-

fortunately, most solutions mainly alleviate the computational

cost of inference, but double the cost of model training.

• Algorithm: We propose an efficient learning paradigm for rec-

ommendation, named DSL. It trains lightweight sparse models

and sticks to a fixed parameter budget during the whole training

stage. Hence, it can achieve end-to-end efficiency from training

to inference.

• Experiments: We conduct extensive experiments on diverse

recommendation models. The results demonstrate the superior-

ity and effectiveness of DSL. More visualizations with in-depth

analyses demonstrate the rationality of DSL.

2 PRELIMINARIES
2.1 Notations
This paper focuses on collaborative recommendation settings. Given

a recommender system with 𝑁 users and𝑀 items, we define the set

of usersU = {𝑢}, items I = {𝑖}, and their interactions O = {𝑦𝑢𝑖 },
where 𝑦𝑢𝑖 = 1 denotes user 𝑢 has adopted item 𝑖 before, otherwise

𝑦𝑢𝑖 = 0. For convenience, we organize them as a graph G = {V, E}.
whereV = {𝑣1, · · · , 𝑣𝑁+𝑀 } is the node set comprising both user

and item nodes, E = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I, 𝑦𝑢𝑖 = 1} is the edge set
containing all observed interactions between users and items. Each

node is encoded into a 𝑑-dimensional embedding vector e ∈ R𝑑
.
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We define 𝑓 as the recommendation model, and the embedding

table of 𝑓 can be represented as follow:

E = [e𝑢1
, e𝑢2

, · · · , e𝑢𝑁︸               ︷︷               ︸
users

; e𝑖1 , e𝑖2 , · · · , e𝑖𝑀︸             ︷︷             ︸
items

]⊤ ∈ R(𝑁+𝑀 )×𝑑 . (1)

For a given recommendation model 𝑓 , it’s observable that the pa-

rameters of the embedding table expand linearly with the number

of users and items. In collaborative recommendation, popular mod-

els like NeuMF [19] and LightGCN [17] primarily rely on learning

the embedding table. Though other learnable parameters in 𝑓 may

impact the final computational cost, this paper primarily considers

the cost associated with embeddings.

2.2 Efficient Recommendation
2.2.1 ProblemFormulation. The efficient recommendation aims

to conserve resources while maintaining the recommendation qual-

ity. These resources often encompass computational costs during

training and testing, memory space, and latency time, all crucial

for practical applications. We now formally define the problem of

efficient recommendation.

Problem 1 (Efficient Recommendation). Given a well-trained
recommendation model 𝑓 that attains performance level 𝑃 , which
requires resources 𝐶tr, 𝐶te and 𝐶m for training, testing, and memory
cost, respectively. Consider another model 𝑓 ′ that achieves perfor-
mance level 𝑃 ′ after convergence with 𝐶′

tr
, 𝐶′

te
and 𝐶′

m
. The task of

efficient recommendation is to find the alternative 𝑓 ′ that is capable
of replacing 𝑓 , satisfying:𝐶′

tr
< 𝐶tr,𝐶′te < 𝐶te,𝐶′m < 𝐶m and 𝑃 ′ ≈ 𝑃 .

The objective of Problem 1 is to look for a model with fewer pa-

rameters to conserve resources. We summarize and discuss existing

methods towards this goal from two perspectives: coarse-grained

model architectures and fine-grained model architectures.

2.2.2 Efficiency via Coarse-grained Model Architectures.
The efficiency of the model is influenced by its coarse-grained ar-

chitecture, which is determined by the dimensions of the embedding

table. Reducing the dimension of the embedding table can enhance

efficiency for model training and inference. However, these stream-

lined models often struggle to deliver the promising performance

equivalent to their larger counterparts, i.e., 𝑃 ′ ≈ 𝑃 in Problem 1

does not hold. To address this issue, knowledge distillation (KD)

methods are employed [20, 22, 41], which distills knowledge from

larger pre-trained teacher models into smaller ones to improve

the recommendation performance. However, extensive studies [22]

demonstrate that there still exists a non-negligible performance

gap between small and large models. Furthermore, the computa-

tional expense of pre-training is not mitigated, rendering these

approaches insufficient for fully resolving Problem 1.

2.2.3 Efficiency via Fine-grained Model Architectures. Ap-
proaches from a microscopic perspective assign distinct embedding

dimensions to individual users and items, presenting a fine-grained

model design philosophy to achieve efficiency. AutoML-based meth-

ods [1, 54] search for the optimal model architecture within a prede-

fined search space. However, perfectly defining the search space is

challenging [54]. Furthermore, complex procedures of optimization

and performance estimation [1] also double the cost, making it

Sparsity 
Initialization

Dense embeddings Sparse Learning

Training

Prune 

Grow 

Dynamic Exploration Stage

Update

Users

Items

Sparse embeddings

Exploration is performed every ΔT iterations during sparse learning.

Figure 1: The overview of the proposed Dynamic Sparse
Learning (DSL) framework.

difficult to solve Problem 1. Another research line is model pruning,

guided by the lottery ticket hypothesis (LTH) [8, 14, 36]. It states

that sparse models discovered by pruning can replace full models

without performance degradation. Despite its potential benefits,

LTH has not been extensively studied in the field of recommender

systems. In this regard, we provide a formal definition of the win-

ning ticket in recommendation.

Definition 1 (Winning Ticket). Given a recommendationmodel
𝑓 with embedding table E, a binary mask M ∈ {0, 1}∥E∥0 can cre-
ate a sparse embedding table: E′ ← M ⊙ E, where ⊙ denotes the
element-wise product.

1. The model 𝑓 (G, E) with a dense embedding table E can obtain
the performance 𝑃 after training 𝑇 iterations.

2. A sparse model 𝑓 (G, E′) can obtain the performance level 𝑃 ′

after training 𝑇 ′ iterations.
If ∃M ∈ {0, 1}∥E∥0 such that 𝑇 ′ ≤ 𝑇 , 𝑃 ′ ≥ 𝑃 and ∥E′∥

0
≪ ∥E∥

0
,

then we define the sparse model E′ as a winning ticket.

As per Definition 1, winning tickets present a natural solution to

Problem 1, which possesses an attractive property: we could have

trained from a sparse lightweight model if only we had known

which mask to choose. Recent work LTH-MRS [46] has explored

and validated the existence of lottery tickets in recommendation

models. However, it adopts a similar pruning strategy as in LTH

[14] — iterative magnitude pruning — to locate the winning tickets.

This multiple-round training strategy is a surefire way to find the

winning ticket, while it will largely increase the training costs.

Although winning tickets are fascinating, how to efficiently find

them is still an open problem [11, 51]. We summarize some specific

studies of efficient recommendation in Table 1. More discussions

are provided in Section 5.

3 METHODOLOGY
3.1 Dynamic Sparse Learning
In conventional model learning, all users and items are represented

by embeddings of uniform size. However, since the amount of in-

formation carried by diverse users and items is very likely to be
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different, the strategy of assigning the same embedding size may be

suboptimal. Observations from prior studies such as ESAPN [26],

UnKD [2], and LTH-MRS [46], suggest that inactive users and un-

popular items may contain less information, necessitating smaller

embedding sizes to depict their simpler characteristics. Hence, we

relax the constraint on embedding size and encourage the model to

dynamically discover those redundant weights during learning. The

overview of DSL is displayed in Figure 1, which includes three steps:

sparsity initialization, sparse learning, and dynamic exploration.

DSL initiates the training process with a randomly sparsified model.

Furthermore, the dynamic exploration step is periodically (i.e., Δ𝑇
training iterations) introduced during the sparse learning process.

Now we elaborate on these three steps in detail.

3.1.1 Sparsity Initialization. Given a dense user-item embed-

ding table E, we first establish the model’s sparsity 𝑠 ∈ (0, 1). Then
we initialize a binary mask M ∈ {0, 1}∥E∥0 with a random sparsity

distribution, where ∥M∥
0
= ∥E∥

0
· (1 − 𝑠), and we can obtain a

sparse embedding table E′ ← M ⊙ E. Please note that the binary
mask is solely introduced to aid in the description of our opera-

tions. In practice, there is no need to store this additional matrix.

To ensure a constant model parameter budget, we fix the sparsity 𝑠

throughout the whole training process.

3.1.2 Sparse Learning. We directly train the sparse model until

entering the next dynamic exploration stage. As shown in Figure

1, we will transition between the exploration stage and the sparse

learning multiple times. Since a new sparse distribution, i.e., model

architecture, is obtained after each dynamic exploration, the model

needs to retune parameters to fit new architecture. We define 𝑇𝑒𝑛𝑑
as the total training iterations and Δ𝑇 as the number of iterations

for each round of the sparse learning. We find that both too-large

and too-small values of Δ𝑇 can greatly deteriorate the performance.

Given a fixed training iteration 𝑇𝑒𝑛𝑑 , if we make Δ𝑇 too large, it

will greatly reduce the number of times entering the exploration

step, which means that the model has fewer opportunities to mod-

ify the current model structure. Ultimately, when Δ𝑇 → ∞, it is
equivalent to directly training a randomly pruned model, which

will lead to poor performance. When Δ𝑇 is too small, the model

cannot adequately adjust the parameters to adapt to the current

architecture, so when entering the exploration stage, it is difficult

to accurately remove redundant weights or add important weights.

This will undoubtedly degrade the performance. Hence, an appro-

priate number of sparse training iterations Δ𝑇 is necessary. In view

of that, we conduct comprehensive ablation studies in Section 4.4.1.

3.1.3 Dynamic Exploration. Exploration is performed every Δ𝑇
iteration during the model training process. In this step, we dynami-

cally adjust the sparsity distribution of the model parameters. There

exist three key components: update schedule, pruning principle,

and growth principle.

• Update schedule. To ensure the stability of the exploration

stage, we set the update ratio 𝜌𝑡 for every exploration using a

cosine annealing schedule, where 𝑡 is the current training step.

Take 𝜌0 as the initial update ratio at the 0-th iteration. Following

[28], the decay function is defined as:

𝜌𝑡 =
𝜌0

2

(
1 + cos

(
𝜋𝑡

𝑇
end

))
. (2)

Algorithm 1 Dynamic Sparse Learning

Input: Dense embedding table E, DatasetD, Random binary mask

M ∈ {0, 1}∥E∥0 with sparsity 𝑠 , Loss L, Learning rate 𝜂, Initial

update ratio 𝜌0, Δ𝑇 , 𝑇𝑒𝑛𝑑 .
1: Initialize sparse table E← M ⊙ E
2: for training iteration 𝑡 ∈ {1, ...,𝑇𝑒𝑛𝑑 } do
3: Sampling a batch 𝑏𝑡 ∼ D
4: if (𝑡 mod Δ𝑇 == 0) then
5: 𝜌𝑡 ← CosineAnnealing(𝜌0, 𝑡,𝑇𝑒𝑛𝑑 )
6: Creating M by pruning and growth with 𝜌𝑡
7: Updating sparse embedding table E
8: else

E← E − 𝜂∇EL
9: end if
10: end for
11: return A sparse embedding table

As model training approaches convergence, the update ratio

should gradually decrease to ensure stable convergence. Hence,

this decay strategy facilitates the gradual adoption of the model

architecture to stabilize the training process. We also verify the

effectiveness of this strategy in Section 4.4.3.

• Pruning principle. Following [14], we adopt the weight magni-

tude as the pruning indicator. We prune a 𝜌𝑡 ratio of the lowest-

magnitude weights. It is worth mentioning that we maintain the

same update ratio in both the pruning and growth process to

stick to a fixed budget.

• Growth principle. We monitor the gradients of the pruned

weights to assess their potential importance in the final predic-

tion. Then we reactivate a 𝜌𝑡 ratio of the pruned weights having

the highest gradient magnitudes, which will participate in the

next round of sparse learning. Such a growth principle provides

a regret mechanism for pruning, serving as compensation for

the information loss caused by the previous greedy pruning [46].

The overview of the proposed framework is depicted in Figure 1,

and the detailed pipeline of DSL is summarized in Algorithm 1.

3.2 Technique Analysis
In this section, we provide detailed analyses and discussions of

the working mechanism of the DSL. It can achieve sparse learning

while retaining the performance for the following reasons:

• Dynamic Architecture Exploration. Recklessly training a

static model architecture with random sparsity distribution often

leads to suboptimal performance [46]. This is mainly due to the

existence of poor natural model architectures [25], which result

in subpar performance. In contrast, DSL flexibly adjusts the

suboptimal structure during training, allowing the model to

dynamically learn the importance of weights, thus achieving

better performance.

• Sufficient Sparse Learning. DSL monitors the states of the

parameters, such as magnitudes or gradients, which reflect their

importance. This provides a guarantee for the subsequent precise

parameter pruning and growth process. However, it will also

lead to insufficient exploration, resulting in a trade-off between
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Table 2: Performance over diverse models. 𝑙 and 𝑑 denote the layer number and the embedding size, respectively. Following
work [6], we use MACs (Tr.) and MACs (In.) to measure the training and inference computational costs, respectively.

Model

MovieLens-1M CiteUlike Foursquare

MACs (Tr.) MACs (In.) Recall/HR NDCG MACs (Tr.) MACs (In.) Recall/HR NDCG MACs (Tr.) MACs (In.) Recall/HR NDCG

NeuMF 3.13e+13 9.68e+08 0.7867 0.4478 3.85e+12 8.87e+08 0.4000 0.2053 3.72e+13 2.50e+09 0.4940 0.2723

+ DSL 2.09e+13 6.47e+08 0.7525 0.4531 2.58e+12 5.93e+08 0.4000 0.2809 2.49e+13 1.67e+09 0.5663 0.3449

ConvNCF 1.50e+15 4.65e+10 0.7745 0.5261 1.83e+14 4.26e+10 0.3429 0.2816 1.76e+15 1.20e+11 0.5301 0.2583

+ DSL 0.38e+15 1.19e+10 0.7990 0.4875 0.46e+14 1.09e+10 0.3714 0.2076 0.45e+15 0.31e+11 0.4940 0.3115

MultVAE 2.40e+12 1.08e+10 0.3099 0.3052 1.36e+13 6.40e+10 0.2260 0.1278 4.61e+13 2.24e+11 0.1550 0.1639

+ DSL 1.20e+12 0.54e+10 0.3080 0.3005 0.68e+13 3.20e+10 0.2044 0.1093 3.69e+13 1.79e+11 0.1427 0.1485

CDAE 2.67e+11 1.26e+10 0.3254 0.3236 3.60e+12 6.77e+10 0.1687 0.1080 1.15e+13 2.27e+11 0.2504 0.2452

+ DSL 1.33e+11 0.63e+10 0.3657 0.3656 1.80e+12 3.39e+10 0.1423 0.0962 0.92e+13 1.82e+11 0.2350 0.2303

Amazon-Book Yelp2018 Gowalla

MACs (Tr.) MACs (In.) Recall NDCG MACs (Tr.) MACs (In.) Recall NDCG MACs (Tr.) MACs (In.) Recall NDCG

LightGCN (𝑙=3) 1.59e+20 6.88e+13 0.0414 0.0321 4.00e+19 3.32e+13 0.0642 0.0528 1.75e+19 2.21e+13 0.1816 0.1550

+ DSL 0.95e+20 4.14e+13 0.0416 0.0325 2.67e+19 2.22e+13 0.0641 0.0527 1.16e+19 1.48e+13 0.1813 0.1547

LightGCN (𝑙=4) 2.12e+20 9.17e+13 0.0406 0.0313 5.34e+19 4.42e+13 0.0649 0.0530 2.33e+19 2.95e+13 0.1830 0.1550

+ DSL 1.17e+20 5.06e+13 0.0405 0.0314 3.34e+19 2.77e+13 0.0651 0.0536 1.45e+19 1.84e+13 0.1821 0.1544

UltraGCN (𝑑=64) 5.02e+13 6.24e+11 0.0678 0.0553 2.37e+13 15.5e+10 0.0673 0.0554 9.05e+13 1.61e+11 0.1858 0.1576

+ DSL 2.69e+13 1.56e+11 0.0685 0.0563 1.68e+13 9.89e+10 0.0645 0.0530 6.23e+13 1.03e+11 0.1742 0.1448

UltraGCN (𝑑=128) 9.85e+13 1.25e+12 0.0712 0.0582 4.62e+13 3.09e+11 0.0676 0.0556 1.76e+14 3.22e+11 0.1844 0.1539

+ DSL 5.18e+13 0.31e+12 0.0727 0.0582 3.23e+13 1.98e+11 0.0651 0.0532 1.20e+14 2.06e+11 0.1792 0.1478

the number of exploration cycles and sparse learning iterations.

In Section 4.4, we conduct extensive experiments to verify this.

• Sufficient Exploration Space. One key strength of DSL is its

ability to reactivate important parameters that were pruned,

thus avoiding the problem of degraded performance in com-

pressed models. Furthermore, as DSL searches for the most crit-

ical pruned parameters to reactivate in each round, DSL has

the potential to surpass the original model’s performance (cf.
Section 4.3). Additionally, the regret mechanism imbues DSL

with more flexibility in adapting to different model architectures,

thus enhancing the stability of the compressed model.

3.3 Complexity Analysis
We use LightGCN [17], a widely used collaborative recommenda-

tion model, to instantiate this. It contains two critical components:

light graph convolution (LGC) and layer combination (LC). Assum-

ing that it performs 𝐿-layer LGC with the adjacency matrix A of

graph G. Then the time complexity of LGC is O (∥A∥0 × 𝑑 × 𝐿); LC
is O (𝑁 × 𝑑 +𝑀 × 𝑑) and similarity computation is O (𝑁 ×𝑀 × 𝑑).
Due to (𝑁 + 𝑀) ≪ (𝑁 × 𝑀), the total time complexity is ap-

proximated to O ((∥A∥0 × 𝐿 + 𝑁 ×𝑀) × 𝑑). For the sparse model

with sparsity 𝑠 , the time complexity will be greatly reduced to

O ((∥A∥0 × 𝐿 + 𝑁 ×𝑀) × 𝑑 × (1 − 𝑠)).

4 EXPERIMENTS
To verify the superiority of DSL, we conduct extensive experiments

to answer the following Research Questions:
• RQ1: How does DSL perform in terms of cost and performance,

when applying to diverse recommendation models?

• RQ2: Compared with the state-of-the-art solutions for efficient

recommendation, how does DSL perform?

• RQ3: For different hyper-parameters in DSL, what are their

roles or impacts on performance?

• RQ4: Does DSL explore the model architectures with regular

patterns or insightful interpretations?

4.1 Experimental Setup
4.1.1 Datasets & Metrics. We conduct experiments on 6 bench-

mark datasets, including 3 small-scale datasets: MovieLens-1M,

CiteUlike and Foursquare, and 3 large-scale datasets: Amazon-

Book, Yelp2018 and Gowalla. According to problem definition 1, we

need to evaluate our method from the following two perspectives.

In terms of model performance, we adopt the full-ranking proto-

col [17] and present the results using the widely used Recall@20,

HR@20, and NDCG@20 metrics. In terms of costs, following most

pruning-related studies [7], we adopt the Training MACs (Tr.), In-

ference MACs (In.), and Memory to evaluate the computational

efficiency and memory overhead.

4.1.2 Backbone Models. To verify that DSL can be applied to

diverse models, we choose 6 backbonemodels, which can be divided

into the following three categories:

• Collaborative filtering models: NeuMF [19], ConvNCF [18].

• Autoencoder-based models: CDAE [48], MultVAE [24].

• Graph-based models: LightGCN [17], UltraGCN [29].

4.1.3 Baselines. To demonstrate the superiority of DSL, we com-

pare it with diverse state-of-the-art solutions for efficient recom-

mendation. They fall into the following three categories:

• KD-based methods: TKD [20], RKD [41].

• AutoML-based methods: AutoEmb [52], ESAPN [26].

• MP-basedmethods: PEP [27], LTH-MRS [46], Random Pruning

(RP) [62], One-shot Magnitude Pruning (OMP) [16], Without

Rewinding (WR) [34].
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Table 3: Result comparisons of diverse solutions for efficient recommendation. The average and standard deviation results are
reported across five random runs. We adopt the models with different embedding sizes. The bold and underlined numbers
highlight the best and the second best performance, respectively.

Category Method

Embedding size=64 Embedding size=128 Average

MACs
MACs (Tr.) Memory Recall NDCG MACs (Tr.) Memory Recall NDCG

Baseline 4.00e+19 2103M 0.0642(.0001) 0.0528(.0002) 8.01e+19 2399M 0.0673(.0003) 0.0550(.0001) 0

KD

RKD 6.00e+19 2103M 0.0558(.0005) 0.0460(.0004) 1.20e+20 2399M 0.0610(.0003) 0.0493(.0004) + 49.9%

TKD 6.67e+19 2103M 0.0615(.0007) 0.0514(.0006) 1.34e+20 2399M 0.0645(.0005) 0.0533(.0003) + 67.1%

AutoML

AutoEmb 7.92e+19 4210M 0.0627(.0002) 0.0511(.0003) 1.58e+20 4521M 0.0654(.0003) 0.0536(.0003) + 97.7%

ESAPN 1.91e+20 4364M 0.0638(.0002) 0.0525(.0002) 3.81e+20 4675M 0.0672(.0003) 0.0545(.0002) + 376.6%

MP

RP 2.67e+19 1052M 0.0557(.0011) 0.0458(.0010) 5.34e+19 1199M 0.0608(.0009) 0.0498(.0009) - 33.3%
OMP 6.67e+19 2103M 0.0622(.0000) 0.0509(.0001) 1.33e+20 2399M 0.0661(.0001) 0.0542(.0000) + 66.4%

WR 1.93e+20 2103M 0.0621(.0003) 0.0501(.0004) 3.85e+20 2399M 0.0661(.0004) 0.0537(.0005) + 381.6%

PEP 3.34e+19 2082M 0.0592(.0013) 0.0484(.0011) 6.68e+19 2375M 0.0623(.0009) 0.0501(.0010) - 16.5%

LTH-MRS 1.93e+20 2103M 0.0635(.0000) 0.0525(.0001) 3.85e+20 2399M 0.0666(.0001) 0.0545(.0001) + 381.6%

DSL (Ours) 2.67e+19 1052M 0.0641(.0002) 0.0527(.0001) 5.34e+19 1199M 0.0675(.0003) 0.0553(.0002) - 33.3%
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Figure 2: Performance comparisons with different sparsity levels. The star denotes the extreme sparsity of DSL, which achieves
the similar performance levels as the baseline.

4.2 Performance Evaluations (RQ1)
We implement DSL on various models, with settings detailed in the

code link. The results presented in Table 2 highlight the achieve-

ment of extreme sparsity levels — the highest degree of sparsity

attainable without incurring significant performance loss. From

these results, we make the following Observations:
Obs1: DSL consistently reduces both training and infer-

ence costs on diverse models with comparable performance.
DSL is first applied to four backbone models, i.e., CF-based and

autoencoder-based models, using three small-scale datasets (refer

to the first four rows). Specifically, with NeuMF and ConvNCF, the

computational costs of training and testing are reduced by approxi-

mately 50.0% ∼ 74.4%. For autoencoder-based models, MultVAE and

CDAE, the training and inference MACs are cut by about 20% ∼
50%. These findings underline the effectiveness of DSL with classic

models and smaller datasets. Next, DSL is deployed on two widely

used graph-based models of different layer depths and embedding

sizes, and tested on three large-scale datasets. For LightGCN with

different layers and UltraGCN with different embedding sizes, DSL

achieves 29.3%∼47.4% training MACs saving and 33.2%∼75.0% in-

ference MACs saving. These findings confirm the efficacy of DSL

in reducing both training and inference costs across diverse models

and datasets without significant performance compromise. More-

over, DSL outperforms the full model in some cases, such as NeuMF

on MovieLens-1M and CiteUlike, and UltraGCN on the Amazon-

Book. This suggests DSL’s ability to prune redundant weights and

explore more meaningful model architectures.

4.3 Comparisons with Baselines (RQ2)
We compare DSL with other baselines using LightGCN as backbone

model, analyzing its performance across diverse embedding sizes.

To ensure fairness, we commence by utilizing identical dense mod-

els and maintaining equivalent compression ratios. Specifically, we

implement a 50% sparsity level for pruning-based methods, whereas

for KD-based methods, the size of the student models is half that

of their corresponding teacher models, i.e., the original dense mod-

els. The experimental results are shown in Table 3, we make the

following observations:

Obs2: Both KD-based and AutoML-based methods suffer
from large training costs. For KD-based methods, the perfor-

mance of RKD and TKD dropped on average by 11.22% and 4.34%,

respectively. Furthermore, they all require large-scale pre-trained

teacher models, which greatly increases the training costs. For RKD

and TKD, the training MACs increase on average by 49.9% and

67.1%, respectively. For AutoML-based methods, we can observe

that both AutoEmb and ESAPN can keep comparable performance

with baseline. However, they also involve additional parameters,

such as a controller or policy networks, and experience complex

optimization processes. It inevitably results in large training com-

putational and memory costs. In contrast, our proposed DSL dy-

namically trains sparse and lightweight models. On the one hand,

its dynamic exploration stage can find suitable model architectures,

thus guaranteeing comparable performance. On the other hand,

the sparse models and end-to-end training strategy guarantee low

training computational costs and memory overhead.
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Table 4: Comparisons with different decay functions.

Type

Amazon-book Yelp2018 Gowalla

Recall NDCG Recall NDCG Recall NDCG

Cosine 0.0406 0.0316 0.0641 0.0527 0.1812 0.1546

Linear 0.0409 0.0317 0.0638 0.0525 0.1803 0.1538

No decay 0.0394 0.0307 0.0618 0.0507 0.1773 0.1518

Obs3: DSL consistently outperforms other pruning-based
methods. PEP achieves smaller training costs due to its dynamic

training process. However, the performance drops by 6.84%∼9.03%
compared to the baseline, since the dynamic pruning thresholds

will lead to unstable training. OMP has relatively good performance,

while it needs one-shot pruning on pre-trained models. In contrast,

LTH-WRS outperforms OMP. The pruning ratio in each round is

much smaller than OMP, so redundant weights can be pruned more

accurately. Unfortunately, the iterative "train-prune-retain" pipeline

incurs significant training costs amounting to approximately 380%

increase in comparison to the baseline. Moreover, while RP delivers

comparable memory and training costs to DSL, its performance

deteriorates by 9.66%∼13.24%. This is attributed to RP’s use of

solely static sparse models during training, without incorporating

DSL’s exploratory stage. Finally, we can easily observe that our

proposed DSL can overcome all the shortcomings of the above

pruning methods. It effectively saves training and memory costs

with comparable performance.

Obs4: DSL can achieve better “performance-sparsity” trade-
offs. To explore the relationships between performance and the

model sparsity, we plot “performance-sparsity” curve from 0∼90%
sparsity levels. The results are depicted in Figure 2. We can ob-

serve that the performance of RP drops sharply with increasing

sparsity. OMP performs worse than DSL, while LTH-MRS achieves

comparable performance with DSL. We also observe that DSL even

outperforms baseline in some cases, such as 10%∼40% sparsity levels

on Amazon-Book and 0∼40% sparsity levels on Yelp2018. It demon-

strates that the DSL can discover better model structures than

the baselines through dynamic explorations. These results further

demonstrate that our proposed DSL can achieve better trade-offs

while keeping lower computational costs.

4.4 Ablation Study (RQ3)
4.4.1 Effect of Update Interval. To explore the effect of update

intervals, we adjust Δ𝑇 under different sparsity levels. Δ𝑇 = ∞ de-

notes no exploration stage during training, so DSL degenerates

into RP. From the results in Figure 3 (Left), we find that as Δ𝑇 in-

creases, the performance first increases and then decreases. On the

one hand, when Δ𝑇 is too small (e.g., < 1000), the update becomes

too frequent. Model training with the new structure does not fully

converge, which leads to inaccurate judgments of parameter im-

portance. On the other hand, when Δ𝑇 is too large (e.g., > 50000),

the model has fewer opportunities to explore more excellent struc-

tures, which leads to suboptimal performance. Hence, we set Δ𝑇 to

2000∼20000 in our implementations.

4.4.2 Effect of Initial Update Ratio. In DSL, 𝜌0 refers to the

initial ratio of pruning and growth in the exploration stage. In

order to investigate its impact on DSL, we vary the value of 𝜌0
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Figure 3: Performance over three sparsity levels. (Left): Per-
formance over different update intervals Δ𝑇 ; (Right): Perfor-
mance over different initial update ratios 𝜌0.

across a range of small-to-large values Please note that 𝜌0 = 0

means no update during training, so DSL also degenerates into RP.

The results are depicted in Figure 3 (Right). We observe that as 𝜌0
increases, the performance also shows a trend of increasing first

and then decreasing. When 𝜌0 is too small (e.g., < 0.1), the scope

of each exploration will be smaller, making it difficult to obtain a

better model structure for each update. If we set 𝜌0 too large (e.g.,
> 0.7), it will also lead to poor performance. Too large adjustments

will greatly influence the stability of training, such as destroying

more critical weights or adding more trivial weights. In practice, we

usually set 𝜌0 in the range of 0.3 ∼ 0.5. Within this range, DSL can

achieve an appropriate degree of dynamic adjustment, enabling the

model to remove/discover an appropriate amount of trivial/critical

parameters during training.

4.4.3 Effect of Update Decay Function. To substantiate the

rationality of our choice of cosine annealing as the update decay

function, we compare its performance with that of two alternative

decay schedules: linear decay and no decay (i.e., where the update

ratio remains constant throughout training). From the results in

Table 4, we can find that updating with no decay makes it difficult to

learn effective parameters. With each exploration, gradually reduc-

ing the update ratio is conducive to model convergence. Compared

with the linear function, using the cosine annealing function as the

decay function can make the update ratio drop more smoothly and

bring more stable performance.

4.5 Analysis and Visualization (RQ4)
4.5.1 Sparsity Distribution Analyses and Visualizations. To
study whether DSL can learn meaningful statistical regularities or

patterns of sparsity, we conduct further analyses and visualizations

about the sparse embeddings. Firstly, we sort and uniformly group

users and items by popularity, and then count the average sparsity

of the embeddings within each group, as shown in Figure 4 (Left).
To illustrate the sparsity distribution more intuitively, we visualize

the sparse embeddings with different popularity levels, as shown

in Figure 4 (Right). We can observe that as the popularity increases,

the sparsity of the embeddings learned by DSL gradually decreases.

DSL can indeed discover interesting patterns: active users and pop-

ular items may carry more information, thereby requiring denser
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Figure 4: (Left): Sparsity distribution of the embeddings.
Larger GroupIDs indicate more popular users or items.
(Right): Embedding visualization with different popularity-
levels. Darker color denotes larger weight magnitude and
white color denotes the pruned weights.

embeddings,and tend to heavily prune these over-parameterized

embeddings to better preserve the performance.

4.5.2 Convergence Analyses. To better illustrate the influence

of DSL on training convergence, we modify its parameters - ini-

tial update ratios 𝜌0 and update intervals Δ𝑇 - and plot the corre-

sponding loss decline curves for LightGCN and MultVAE models

in Figure 5. At the beginning of training, DSL shows a rapid drop

in training loss at a similar speed to the baseline and RP. How-

ever, as the number of iterations increases, the curves generated

by DSL with varying update ratios and intervals exhibit slower

convergence rates at higher update ratios or smaller update inter-

vals. Compared to RP, DSL enables periodic parameter updates that

facilitate faster convergence to lower loss values without impeding

model convergence. Furthermore, compared to the baseline, while

DSL does exhibit a slightly slower convergence speed compared

to the baseline, it achieves comparable loss levels under nearly

identical training epochs.

5 RELATEDWORK
Model Compression [10, 30, 32, 43, 49, 61] aims to obtain light-

weight models by removing redundant weights. It becomes an

effective solution to reduce model size in the fields of computer vi-

sion [8, 35], graph learning [6, 12, 13, 36–39], and natural language

processing [3–5]. Recently, the lottery ticket hypothesis [14, 46]

becomes an effective strategy to guide the model pruning. It states

that dense randomly initialized networks contain sparse subnet-

works (aka., winning tickets) that can be trained in isolation to

achieve comparable performance. LTH-MRS [46] adopts an itera-

tive pruning strategy to find the winning tickets in recommendation

models, while still suffering from the expensiveness of multi-round

retraining. PEP [27] proposes learnable pruning thresholds in model

training, while the unstable learning process of thresholds makes it

difficult to keep a controllable training budget and a stable perfor-

mance. Distinct from them, we adjust the sparsity distribution of

model weights while sticking to a fixed parameters budget, which

can achieve both training and inference efficiency.

Efficient Recommendation is drawing widespread attention, due

to the emergence of large-scale recommendation models [9, 46].
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Figure 5: Convergence comparisons of training loss for the
baseline model, RP, and DSL on different initial update ratios
𝜌0 and update intervals Δ𝑇 .

Knowledge Distillation (KD) [20–22, 41] improves the performance

of small-scale student models by distilling the knowledge from

large-scale teacher models. BKD [22] proposes a bidirectional dis-

tillation framework, which enhances the collaborations between

teacher and student models. TKD [20] develops a topology distil-

lation strategy, which transfers topological knowledge and guides

students with diverse capacities. However, they need to pre-train

large-scale teacher models, which still leads to expensive memory

and training costs. Furthermore, there also exists a large gap in

performance between student and teacher models [41]. Automated

Machine Learning (AutoML) [1, 26, 27, 52–54] improves inference ef-

ficiency by searching powerful and lightweight model architectures.

AutoEmb [52] adopts a DARTS-based [25] optimization strategy to

decide optimal embedding dimensions for users and items. ESAPN

[26] leverages an automated reinforcement learning agent to search

the embedding size of models. However, they require to predefine a

search space with human prior knowledge. Meanwhile, the complex

processes of optimization and performance estimation also result

in an unaffordable computational cost. In contrast, our strategy can

effectively trim down both training and inference overheads, by

simply training a lightweight sparse model in an end-to-end way.

6 CONCLUSION AND FUTUREWORK
In this work, we proposed DSL, which aims to trim down both the

training and inference costs for recommendation models. Specif-

ically, we introduced the concept of sparsity to the models, pe-

riodically and dynamically adjusted the sparsity distribution of

model weights, and sticked to a fixed parameter budget through-

out the entire learning lifecycle. Different from existing solutions,

DSL achieved the intriguing prospect of “end-to-end” efficiency

from training to inference. We conducted extensive experiments

on diverse recommendation models with six benchmark datasets.

The experimental results demonstrated that DSL can largely reduce

the training cost, inference cost, and memory, with comparable

recommendation performance. Finally, we also provided analyses

and visualizations to demonstrate the effectiveness and rationality.
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