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The learning objective plays a fundamental role to build a recommender system. Most methods routinely

adopt either pointwise (e.g., binary cross-entropy) or pairwise (e.g., BPR) loss to train the model parameters,

while rarely pay attention to softmax loss, which assumes the probabilities of all classes sum up to 1, due

to its computational complexity when scaling up to large datasets or intractability for streaming data where

the complete item space is not always available. The sampled softmax (SSM) loss emerges as an efficient

substitute for softmax loss. Its special case, InfoNCE loss, has been widely used in self-supervised learning

and exhibited remarkable performance for contrastive learning. Nonetheless, limited recommendation work

uses the SSM loss as the learning objective. Worse still, none of them explores its properties thoroughly and

answers “Does SSM loss suit for item recommendation?” and “What are the conceptual advantages of SSM

loss, as compared with the prevalent losses?”, to the best of our knowledge.

In this work, we aim at offering a better understanding of SSM for item recommendation. Specifically,

we first theoretically reveal three model-agnostic advantages: (1) mitigating popularity bias, which is ben-

eficial to long-tail recommendation; (2) mining hard negative samples, which offers informative gradients

to optimize model parameters; and (3) maximizing the ranking metric, which facilitates top-K performance.

However, based on our empirical studies, we recognize that the default choice of cosine similarity function

in SSM limits its ability in learning the magnitudes of representation vectors. As such, the combinations

of SSM with the models that also fall short in adjusting magnitudes (e.g., matrix factorization) may result

in poor representations. One step further, we provide mathematical proof that message passing schemes in

graph convolution networks can adjust representation magnitude according to node degree, which naturally

compensates for the shortcoming of SSM. Extensive experiments on four benchmark datasets justify our
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analyses, demonstrating the superiority of SSM for item recommendation. Our implementations are avail-

able in both TensorFlow1 and PyTorch.2
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1 INTRODUCTION

In recent years, studies on recommendation modeling have been extensively conducted. Many
model architectures have been proposed to capture user preference from user-item interactions,
covering multilayer perceptrons [19], attention mechanisms [18], generative models [55], and
graph neural networks [17, 25, 51, 58], and so on. However, relatively few studies focus on the
learning objective — the way to train and optimize the model parameters. Specifically, most of
work casts the item recommendation problem into a supervised learning task, and adopts one of
the following learning objectives:

— Pointwise loss. From the perspective of binary classification or regression, it treats the
observed user-item interactions as positive instances, and other missing data as weak nega-
tives. For a user-item pair, it encourages the model prediction to fit the corresponding label,
so as to approach user preference directly. The common choices include binary cross-entropy
[19, 41, 49] and mean square error [16, 26].

— Pairwise loss. It models the relative ordering of a positive item over an unobserved item
for a target user. Numerically, it forces the model to score an observed item higher than its
unobserved counterparts. Representative pairwise losses are BPR [38, 44, 46] andWARP [47].

— Softmax loss. By applying a softmax function, it normalizes the model predictions over all
items as a probability distribution. It then maximizes the probability of the observed items
as compared with that of the unobserved items. Although aligned well with the ranking
metrics that emphasize the top ranked positions [4, 36], softmax loss is relatively little used in
recommender systems. One reason is that softmax loss assumes the probabilities of all items
for each user sum up to 1, which may be too computationally expensive to scale to large
datasets — in practice, the scale of items easily reaches millions or even larger. Additionally,
calculating the exact probability of each possible interaction may be intractable in streaming
environments [14, 57] where the complete item space is not always available.

Sampled softmax (SSM) emerges as a substitute for softmax. The basic idea is to use a sam-
pled subset of negatives instead of all items. As such, it not only inherits the desired property of
ranking, but also reduces the training cost dramatically [9]. However, directly optimizing classical
recommendation models such as MF [27] may not yield satisfactory performance (cf. Table 2). Typ-
ically, existing recommendation work leverages SSM mainly for two purposes: (1) Approximating
the softmax function. Prior work [2] argues that SSM loss is a biased version of full softmax loss.

1https://github.com/wujcan/SSM-TensorFlow
2https://github.com/wujcan/SSM-Torch
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One possible solution is the logQ correction [2], which samples negative instances from the soft-
max distribution. Some follow-on efforts [1, 3, 29, 35, 45, 53, 57] devise different methods to reduce
the sampling bias. (2) Performing contrastive learning. Inspired by its success in CV [8, 12, 43]
and NLP [10, 11, 28] domains, researchers are exploring contrastive learning for recommenda-
tion [50, 63, 64]. They typically use the InfoNCE loss [43] for the auxiliary task, maximizing the
agreement of positive pairs as compared with that of negative pairs. Essentially, InfoNCE is an
SSM function, since the observed and unobserved user-item pairs can be viewed as positive and
negative instances, respectively.
Nonetheless, only very limited studies [9, 56, 63] utilize SSM as the main learning objective

for model training. Even though some recommendation work has used it, they do not explore its
properties, failing to answer the questions “Does SSM suit item recommendation?” and “What are
the conceptual advantages of SSM, as compared with pointwise and pairwise losses?”.
In this work, we seek to better understand SSM loss for item recommendation. Firstly, we con-

duct theoretical analyses, identifying threemodel-agnostic advantages of SSM loss:

—Alleviating popularity bias. Equipped with in-batch negative sampling, its approximated
closed-form solution w.r.t.interactions is inversely proportional to item popularity in log
scale, naturally suppressing the prediction scores of popular items.

—Mining hard negative samples. It can discover hard negative samples, which contribute
more informative and larger gradients to the optimization and representation learning.

—Maximizing the ranking metric. Optimizing SSM loss is consistent with maximizing the
Discounted Cumulative Gain (DCG) metric, which is more suitable for the top-K task.

We further conduct experiments to justify the superiority of SSM for item recommendation.
Specifically, among collaborative filtering (CF) family, we select four classical models for study-
ing: matrix factorization (MF) [27] representing ID-based methods, SVD++ [26] being the rep-
resentation of history-based approaches, while NGCF [46] and LightGCN [17] on behalf of graph-
based models, respectively. We have two observations: (1) In both normal and long-tail testing
scenarios, history-based and graph-based models achieve leading performance, validating the use-
fulness of SSM; (2) To our surprise, when applying SSM on MF, we observe large performance
degradation in most cases. Scrutinizing these models, we find that MF has no mechanism to adapt
the representation magnitude, as compared with SVD++, NGCF, and LightGCN. Hence, we hy-
pothesize that SSM may be good at learning the representation directions, but falls short in
adjusting the representation magnitudes. Moreover, we give theoretical analyses of this hy-
pothesis. In contrast, the history-based and graph-based models can compensate for the weakness
of SSM.
In a nutshell, our contributions are summarized as follows:

—We present a deep understanding of SSM and theoretically analyze its model-agnostic ad-
vantages: reducing popularity bias, mining hard negatives, and maximizing DCG metric.

—We point out the weakness of SSM loss in learning representation magnitudes, and show
that history- and graph- based recommenders compensate for this weakness.

— Extensive experiments on four benchmark datasets justify the rationality of our analyses,
demonstrating the superiority of SSM for item recommendation.

2 SSM FOR RECOMMENDATION

Suppose we have a datasetD that consists ofM users,N items, and |D| observed interactions. The
goal of item recommendation is to recommend a user with a list of items she may be interested in.
Noise contrastive estimation (NCE) [15] treats this as a binary classification task, discriminating
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between the observed data and some artificially generated noises. Specifically, for each observed
interaction (u, i ), where item i is in user u’s set of adopted items Pu , we independently sample N
negative itemsN = {j1, j2, . . . , jN } from a noise distributionpn . LetI = {i}∪N be the union of the
positive item and the sampled negatives. We assign a binary label Ck to each tuple (u,k ) ∈ u × I,
where Ck = 1 if k = i and 0 otherwise. The priors are p (Ck = 1) = 1/(1 + N ) and p (Ck = 0) =
N /(1 + N ). Using Bayes’ rule, the posterior probabilities are

p (Ck = 1|u,k ) = p (u,k |Ck = 1)

p (u,k |Ck = 1) + Np (u,k |Ck = 0)
, (1)

p (Ck = 0|u,k ) = Np (u,k |Ck = 0)

p (u,k |Ck = 1) + Np (u,k |Ck = 0)
. (2)

Without loss of generality, let p (Ck = 1|u,k ) = σ ( f (u,k )), where σ (·) is the sigmoid function, and
f (u,k ) measures the affinity score between u and k . As such, we can obtain:

p (u,k |Ck = 1) = Np (u,k |Ck = 0) exp ( f (u,k )). (3)

Note that among the (N + 1) tuples, only one is labeled 1. Our goal is to maximize the following
joint conditional probability:

P
(i )
=

p (u, i, j1, . . . , jN |Ci = 1,Cj1 = 0, . . . ,CjN = 0)∑
j ∈I p (u, i, j1, . . . , jN |Ci = 0,Cj1 = 0, . . . ,Cj = 1, . . . ,CjN = 0)

(ii )
=

p (u, i |Ci = 1)
∏

k ∈I\{i } p (u,k |Ck = 0)∑
j ∈I p (u, j |Cj = 1)

∏
l ∈I\{j } p (u, l |Cl = 0)

(iii )
=

Np (u, i |Ci = 0) exp ( f (u, i ))
∏

k ∈I\{i } p (u,k |Ck = 0)∑
j ∈I Np (u, j |Cj = 0) exp ( f (u, j ))

∏
l ∈I\{j } p (u, l |Cl = 0)

(iv )
=

exp ( f (u, i ))∑
j ∈I exp ( f (u, j ))

, (4)

where (i ) measures the normalized conditional probability that the observed item i is correctly
labeled as 1 while the rest are labeled as 0 (cf. the numerator) against any other situation where
some j ∈ I is labeled as 1 while the rest are labeled as 0 (cf. the denominator), (ii ) follows from the
independence assumption of the (N + 1) tuples, (iii ) is the direct result of applying Equation (3),
and (iv ) utilizes the fact that both the numerator and denominator share a common factor of
N
∏

k ∈I p (u,k |Ck = 0). Usually, the negative-logarithm is applied for numerical stability, resulting
in the sampled-softmax loss function:

LSSM = − 1

|D|
∑

(u,i )∈D
log

exp ( f (u, i ))

exp ( f (u, i )) +
∑

j ∈N exp ( f (u, j ))
. (5)

Here, we omit the regularization term for simplicity. Typically, we use the mini-batch stochastic
gradient descent method, e.g., Adam [24], to optimize model parameters. To make full use of par-
allel computing of modern hardware, in-batch negative sampling [20] is commonly adopted, that
is, treating positive items of other users in the same batch as the negatives. In expectation, this is
equivalent to sampling based on the empirical frequency of items in the dataset. Common choices
of the affinity function f (u, i ) are cosine similarity or inner product of the representations of u
and i with a temperature coefficient. Recently, [23, 50] have demonstrated that cosine similarity
with temperature coefficient is a better choice, since it endows SSM with the ability to mine hard
negatives in a bounded interval. Wewill go deep into this property later. We should emphasize that
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throughout this article, unless otherwise stated, SSM is equipped with temperature-aware cosine
similarity function and in-batch negative sampling.

3 THEORETICAL ANALYSES

In this section, we first conduct thorough theoretical analyses to reveal three advantages of SSM for
item recommendation. We then identify the potential limitation of SSM in learning representation
magnitude, and show that the message passing scheme can compensate for this limitation.

3.1 Properties of SSM

3.1.1 Alleviating Popularity Bias. Intuitively, items with a larger frequency are more likely to be
involved in a batch. In other words, this is equivalent to choosing negative items from an empirical
frequency sampler, in expectation. As a consequence, popular items are prone to be penalized as
negatives, preventing the model from recommending them to some degree [57]. Here, we prove
this statement theoretically.
Let Lu be the loss on user u and l (u, i ) be the individual loss term of positive sample (u, i ), then

we have,

Lu =
∑
i ∈Pu

l (u, i ) =
∑
i ∈Pu

{
− log exp ( f (u, i ))

exp ( f (u, i )) +
∑

j ∈N exp ( f (u, j ))

}
.

The gradient of Lu w.r.t.f (u, i ) is as follows:

∂

∂ f (u, i )

⎧⎪⎪⎨⎪⎪⎩
∑
k ∈Pu

⎡⎢⎢⎢⎢⎢⎣log
	
�1 +

∑
j ∈N

exp ( f (u, j ) − f (u,k ))�
�
⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

=
∑
k ∈Pu

∂

∂ f (u, i )
log

[
1 + N E

j∼pn
exp ( f (u, j ) − f (u,k ))

]
. (6)

Here, we use the law of large numbers, changing the sum operation to the expectation. pn is the
distribution of negative samples which is predefined. Note that there are two cases where the term
f (u, i ) is involved: (1) k = i , that is, positive sample is (u, i ). Note that with probability pn (i ), item
i is sampled as a negative item in this case. As such, the gradient of this part is

−1 + 1 + Npn (i )

exp ( f (u, i )) + N Ej∼pn exp ( f (u, j ))
exp ( f (u, i )). (7)

(2) k � i but j = i , that is, only negative sample is (u, i ). In this case, the gradient is

∑
k ∈Pu \{i }

Npn (i ) exp ( f (u, i ))

exp ( f (u,k )) + N Ej∼pn exp ( f (u, j ))
. (8)

By adding (7) and (8) together, we obtain the total gradient of Lu w.r.t.f (u, i ). We further enforce
the total gradient to be zero and obtain the nearly closed-form solution of f (u, i ):

f ∗ (u, i ) = log
N Ej∼pn exp ( f (u, j ))

1 + N |Pu |pn (i ) . (9)

Here we use the fact that exp ( f (u,k )) � N Ej∼pn exp ( f (u, j )),k ∈ Pu when N → ∞. Notice
that the larger pn (i ) is (i.e., the more popular the item is), the smaller f ∗ (u, i ) will be. This is in
line with Inverse Propensity Weighting (IPW) methods that adjust the data distribution to be
even by reweighting the training instances for bias reduction [6, 40]. Prior work [63] revealed that
InfoNCE [43] (which has a similar formula as SSM) and IPW share the same global optima when
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setting the proposal distribution to be the propensity score. However, to our knowledge, we are
the first to derive the closed-form solution of SSM, providing more intuitive explanations for why
SSM can alleviate popularity bias and further enabling flexible control over item popularity. We
will conduct quantitative experiments to verify the strength of SSM in suppressing popularity bias
in Section 4.3.
It is worth mentioning that besides the in-batch negative sampling strategy, one can adopt any

other negative sampler to pursue more flexibility. For example, a naive sampler that samples N
negatives for each observed interaction independently from any predefined pn , at the expense of
training speed. We will conduct experiments to study the impact of pn and N in Sections 4.4.2
and 4.4.3, respectively.

3.1.2 Hard Negative Mining. In [23, 50], the authors analyzed that the InfoNCE loss in self-
supervised learning is able to perform hard negative mining. Due to the similar formulae of SSM
and InfoNCE,we find that SSM exhibits similar power inmining hard negative itemswhen learning
user representation.
Formally, we denote the final representations of user u and item i as zu and zi respectively and

adopt cosine similarity with temperature coefficient τ to measure the agreement between u and i ,

that is, f (u, i ) =
s	
u
s i
τ

, where su and si are the normalized representations, i.e., su =
zu
‖zu ‖ , si =

z i
‖z i ‖ .

Then the gradient of l (u, i ) w.r.t.the user representation zu is as follows 3:

∂l (u, i )

∂zu
=
c (i ) +

∑
j ∈N c (j )

τ ‖zu ‖ , (10)

where,

c (k ) =
⎧⎪⎨⎪⎩
(
sk − (s	u sk )su

)	 (Puk − 1) , if k = i(
sk − (s	u sk )su

)	 Puk , if k = j
(11)

Puk =
exp(s	u sk/τ )∑
l ∈I exp(s	u sl/τ )

. (12)

Then, we focus on the magnitude contribution of negative item j ∈ N , i.e., ‖c (j )‖, which is pro-
portional to the following term:

д(x ) =
√
1 − x2 exp

(x
τ

)
,x ∈ [−1, 1], (13)

where x = s	u s j denotes the cosine similarity between zu and z j . By scrutinizing д(x ), we have
the following insights: (1) when setting a proper τ (empirically in the range of 0.1 to 0.2), hard
negative items which have larger x offer larger gradients to guide the optimization, thus mak-
ing learned representations more discriminative and accelerating the training process. (2) when

x becomes large enough (i.e., x > (
√
τ 2 + 4 − τ )/2), д(x ) decreases sharply to 0 as x → 1, which

indicates that SSM has a nice property that weakens the impact of too-hard negatives since they
may be potential positives. It is worth noting that the key difference between our analysis in this
work and previous studies [50] is that we specifically focus on the hard negative mining property
within user-item interactions. Previous work has mainly centered around self-supervised learning
techniques to find hard samples from augmented nodes of the same type (i.e., user or item nodes).
In contrast, by exploring the potential of using hard negative mining within the context of user-
item interactions, we aim at providing more direct insights into the relationship between users

3We adopt the numerator layout notation here.
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and items, which can improve our understanding of the underlying mechanisms of recommender
systems. Compared with other hard negative mining techniques like choosing hard negatives from
top recommendation results of the current training state [61] or setting a margin to block the gra-
dient of easy negative items [31], SSM uses a more graceful way through in-batch negative sharing
strategy and control factor τ , which scarcely increases training complexity.

3.1.3 Maximizing DCG. DCG is a widely-adopted ranking metric that uses a graded relevance
scale to calculate the utility score. The contribution to the utility from a relevant item reduced
logarithmically proportional to the position of the ranked list, which mimics the behavior of a
user who is less likely to examine items at a larger ranking position. Formally, DCG is defined as
follows:

DCG (πfu ,y) =
|I |∑
i=1

2yi − 1
log2 (1 + πfu (i ))

, (14)

where πfu is a ranked list over I induced by f for useru;y is a binary indicator:yi = 1 if item i has
been interacted by u, otherwise yi = 0; πfu (i ) is the rank of i . It is worth noting that, in practice,
there may be more than one item that has been interacted by u in I. Inspired by [4], we derive the
relationship between SSM loss and DCG:

πfu (i ) = 1 +
∑

j ∈I\{i }
I( f (u, j ) − f (u, i ) > 0)

≤ 1 +
∑

j ∈I\{i }
exp( f (u, j ) − f (u, i ))

=
∑
j ∈I

exp( f (u, j ) − f (u, i )). (15)

Based on the fact I(x > 0) ≤ exp (x ), we have:

− logDCG (πfu ,y) ≤ − log
1

log(1 + πfu (i ))

≤ − log 1

πfu (i )

≤ − log exp( f (u, i ))∑
j ∈I exp( f (u, j ))

. (16)

As the fact log(1+x ) ≤ x , we can safely get that: − logDCG is a lower bound of SSM, and minimiz-
ing SSM is equivalent to maximizing DCG of I. Such finding provides insight that SSM matches
well with item recommendation in terms of optimization goal, thus being suitable for optimizing
the recommendation models.

3.2 Potential Limitations of SSM

3.2.1 SSM Fails in Learning Representation Magnitude. In the above section, we have proven
that SSM has three desirable properties for item recommendation. Consequently, a spontaneous
question is: “Can SSM lead to empirical performance gain across different recommender models?”
Towards answering this question, we select three categories of CF methods — ID-, history-, and
graph- based methods — as backbone models to justify its superiority. The detailed results are pre-
sented in Section 4.2.2. To our surprise, in spite of significant performance gains on both history-
based (i.e., SVD++ [26]) and graph-based models (i.e., NGCF [46] and LightGCN [17]), we observe
large performance degradation on ID-based model (i.e., MF [38]). Such inconsistency drives us
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to probe the failure of SSM. Scrutinizing these recommender models, we find that the key lies in
adapting representation magnitudes during representation learning. For SSM, due to the adoption
of cosine similarity, the representation magnitudes will not affect the optimization process (we ig-
nore the regularization term here), thus SSMwill not guide the representation magnitude learning.
What’s worse, ID-based model (i.e., MF) also has no explicit mechanism to adapt the representa-
tionmagnitude, resulting in poor quality of representations. On the contrary, as wewill prove later,
message-passing-based models such as LightGCN can intrinsically adjust the representation mag-
nitude according to the node degree, thus compensating for the limitation of SSM. Hence, we argue
that SSM may be good at learning the representation directions, but falls short in adjusting the
representation magnitudes.

3.2.2 Message Passing can Adjust the Representation Magnitude. Without loss of generality, we
define the message passage rule in user-item interaction graph as follows:

q
′
i =
∑
u ∈Pi

1

|Pi |α0 |Pu |α1
pu , (17)

where α0 and α1 are the normalization factors. In this work, we only analyze from the item side,
since the user side can be derived in the same way.
Suppose the degree of user node |Pu | and item node |Pi | follow the Pareto distribution [33]

with parameter (α ,xm = 1), where α is the shape parameter, xm is the minimum possible value of

node degree (we set it to 1). p (0)
u is initialized with some distribution D (μ0,σ

2
0 ), that is

E( |Pu |) = E( |Pi |) = α

α − 1 ,

V( |Pu |) = V( |Pi |) = α

(α − 1)2 (α − 2)
E(pu ) = E(qi ) = μ0,

V(pu ) = V(qi ) = σ 2
0 (18)

where E(·) and V(·) are the expectation and variance, respectively. Therefore, for a given item i ,
the expectation of the square of its magnitude q

′
i is

E((q
′
i )
2) =

1

|Pi |2α0

⎧⎪⎪⎨⎪⎪⎩
∑
u ∈Pi

Vu +

⎡⎢⎢⎢⎢⎢⎣
∑
u ∈Pi

Eu

⎤⎥⎥⎥⎥⎥⎦
2⎫⎪⎪⎬⎪⎪⎭ , (19)

where,

Vu = V

(
1

|Pu |α1
pu

)
, Eu = E

(
1

|Pu |α1
pu

)
(20)

Since |Pu | and pu are independent variables, we have

Vu = E

(
1

|Pu |2α1

)
E

(
p2
u

)
−
[
E

(
1

|Pu |α1

)]2 [
E(pu )

]2
=

α

α + 2α1

(
σ 2
0 + μ

2
0

)
−
(

α

α + α1

)2
μ20, (21)
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∑
u ∈Pi

Eu =
∑
u ∈Pi
E

(
1

|Pu |α1

)
E

(
pu
)

= |Pi | α

α + α1
μ0. (22)

Finally, we can obtain

E

(
(q
′
i )
2
)
= a |Pi |1−2α0 + b |Pi |2−2α0 , (23)

where,

a =
α

α + 2α1

(
σ 2
0 + μ

2
0

)
−
(

α

α + α1

)2
μ20 > 0

b =
α2μ20

(α + α1)2
> 0. (24)

Specially, when α0 = α1 = 0.5, i.e., the case of LightGCN, E((q
′
i )
2)monotonically linearly increases

as |Pi | increases. We conduct empirical experiments to study the impact of different message-
passing strategies (i.e., different α0 and α1) in Section 4.4.6. While we find an effective way to
compensate for the limitation of SSM loss in learning magnitude, the optimal solution is still an
open question.

4 EXPERIMENTS

We conduct extensive experiments and answer the following research questions:

—RQ 1: Does SSM suit well for item recommendation?
—RQ2:How does SSM performw.r.t.long-tail recommendation, as comparedwith the existing
losses?

—RQ 3: How do different components affect SSM?

4.1 Experimental Setup

4.1.1 Compared Losses. To justify the superiority of SSM on item recommendation, we com-
pare it with diverse losses:

— BCE Loss: A widely used pointwise loss that is formulated as

LBCE = −
∑

(u,i )∈D
logσ ( f (u, i )) −

∑
(u, j )∈D−

log σ̂ ( f (u, j )), (25)

where σ̂ (x ) = 1 − σ (x ), D− is the sampled subset of unobserved interactions.
— BPR Loss: The standard objective function in vanilla NGCF and LightGCN, which encour-
ages the prediction of positive item to be larger than its negative counterpart. The formal
formulation is defined as follows:

LBPR = − 1

|D|
M∑
u=1

∑
i ∈Pu , j�Pu

logσ ( f (u, i ) − f (u, j )). (26)

whereM is the total number of users in the dataset.
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Table 1. Statistics of the Datasets

Dataset #Users #Items #Interactions Density

Gowalla 29,858 40,981 1,027,370 0.00084

Yelp2018 31,831 40,841 1,666,869 0.00128

Amazon-Book 52,643 91,599 2,984,108 0.00062

Alibaba-iFashion 300,000 81,614 1,607,813 0.00007

— SM Loss: It is short for softmax loss which maximizes the probability of the observed items
normalized over all items by softmax function, that is

LSM = − 1

|D|
∑

(u,i )∈D
log

⎧⎪⎨⎪⎩ exp ( f (u, i ))∑N
j=1 exp ( f (u, j ))

⎫⎪⎬⎪⎭ , (27)

where N is the total number of items in the dataset.
— CCL Loss [31]: It’s a contrastive loss proposed recently by maximizing the cosine similarity
of positive pairs while minimizing the similarity of negative pairs below a certain margin:

LCCL = − 1

|D|
∑

(u,i )∈D

⎡⎢⎢⎢⎢⎢⎣1 − f (u, i ) +
w

|N |
∑
j ∈N

( f (u, j ) −m)+

⎤⎥⎥⎥⎥⎥⎦ , (28)

where (·)+ indicates max(0, ·), N is a set of randomly sampled negative samples, m is the
margin for similarity score of negative samples, w is a hyper-parameter to balance the loss
terms of positive samples and negative samples.

We implement SSM and all compared losses on different categories of CF models, ranging from
ID-based (i.e., MF [38]) that directly projects the single ID of a user/item into a latent embedding,
to history-based (i.e., SVD++ [26]) that takes into consideration the user’s historical interactions
for user representation learning, to graph-based methods (i.e., NGCF [46] and LightGCN [17]) that
achieve state-of-the-art performance by performing graph convolutions on the user-item graph.

4.1.2 Datasets and Evaluation Metrics. We conduct experiments on four benchmark datasets:
Gowalla [17, 46], Yelp2018 [17, 46], Amazon-Book [17, 46], and Alibaba-iFashion [50]. Follow-
ing [17, 46], we use the same 10-core setting for the first three datasets. For Alibaba-iFashion,
as processed in [50], we randomly sample 300 k users and collect all their interactions over the
fashion outfits. The statistics of all four datasets are summarized in Table 1. We follow the same
strategy described in [46] to split the interactions into training, validation and test set with a ratio
of 7 : 1 : 2. For users in the test set, we follow the all-ranking protocol [17, 46] to evaluate the
top-K recommendation performance and report the average Recall@20 and NDCG@20.

4.1.3 Hyper-parameter Settings. For a fair comparison, all methods are trained from scratch
which are initialized with Xavier [13]. In line with NGCF and LightGCN, we fix the embedding
size to 64 and optimize all models via Adam [24] with the default learning rate of 0.001 and default
mini-batch size of 2048. The L2 regularization term is added, with the coefficient in the range of
{1e−6, 1e−5, . . . , 1e−1}. The normalization factor of SVD++ is searched in {0, 0.5, 1.0}. For graph-
based method, i.e., NGCG [46] and LightGCN [17], the number of GCN layers K is searched in the
range of {1, 2, 3, 4}. The dropout ratio of NGCF is in {0.0, 0.1, . . . , 0.8}. The layer combination coef-
ficient of LightGCN is set to 1

K+1 . For BCE, we randomly sample nonobserved interactions to form
the negative setD− in each training epoch, the ratio of positive to negative is set to 1 : 4. For BPR,
we randomly sample a noninteracted item of the user as negative for each observed interaction.

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 98. Publication date: March 2024.



On the Effectiveness of Sampled Softmax Loss for Item Recommendation 98:11

For SM, we examine both cosine similarity and inner product similarity between user and item rep-
resentations, and report the best performance. For CCL, as suggested in the article [31], we tune
the marginm among 0.1 ∼ 1.0 at an interval of 0.1 and weightw in the range of {1, 150, 300, 1000}.
The number of negative samples is searched from 1 to 2048. While for SSM, we find cosine simi-
larity always leads to better performance. Since the temperature coefficient τ in both SM loss and
SSM is of great importance [50], we use the following strategy to tune it: we first perform grid
search in a coarse grain range of {0.1, 0.2, 0.5, 1.0}, then in a finer grain range, which is based on
the result of coarse tuning. For example, if the model achieves the best performance when τ = 0.2
in the first stage, then we tune it in the range of {. . . , 0.16, 0.18, 0.22, 0.24 . . .} at finer granularity.
The overall results reported in Table 2 are the average value of 5 runs.

4.2 Overall Performance Comparison

4.2.1 Comparison Among Different Losses. Comparing the best performance each loss can
achieve in Table 2, we have the following observations:

— Among the compared losses, BCE performs worst on all four datasets, which suggests the
limitations of pointwise objective. Specifically, as it approaches the task as a binary classifi-
cation machine learning task, fitting the exact value of labels may introduce noise in item
recommendation. BPR performs better than BCE in most cases, verifying the superiority of
pairwise objectives to capture relative relations among items. Both SM and CCL have signif-
icant gains over BCE and BPR on Yelp2018, Amazon-Book, and Alibaba-iFashion datasets.
A common point of SM and CCL is that they both compare one positive sample with multi-
ple negative samples. This suggests that enlarging the number of negative samples during
training is beneficial to representation learning. On Gowalla, SM and CCL have on-par per-
formance compared to BPR.

— The best performance on each dataset is always achieved by SSM, empirically verifying the
advantages of SSM for item recommendation.We attribute the gains to: (1) the use ofmultiple
negatives for each observed interaction at every iteration, as compared with pointwise and
pairwise loss. In addition, with a proper temperature coefficient, SSM benefits from dynamic
hard negative mining (see Section 3.1.2), in which the hard negative items offer larger gra-
dients to guide the optimization. Moreover, SSM has strong connections with DCG ranking
metric as we have analyzed in Section 3.1.3 — meaning that SSM directly optimizes the goal
of model evaluation. (2) using only a fraction of items from the whole item set for optimiza-
tion, as comparedwith SM,which greatly alleviates the training cost and difficulty, especially
when the set of whole items becomes extremely large. Evidence supporting this assertion
is that the improvements of SSM over SM become more significant on larger datasets (i.e.,
Yelp2018, Amazon-Book, and Alibaba-iFahsion) than a smaller one (i.e., Gowalla). Another
possible reason lies in that by introducing randomness, SSM can avoid the phenomenon that
a few extremely hard negative items dominate the optimization in SM.

4.2.2 Impact of Different Recommenders. In the previous section, we have verified the superi-
ority of SSM loss compared with other losses. Here, we study if SSM loss is consistently a good
choice for optimizing different CF models. From Table 2, we can find that:

— Paired with SSM, both history-based and graph-basedmethods achieve leading performance.
This again verifies the superiority of SSM for item recommendation. However, when imple-
mented on MF, SSM performs poorly. We attribute this phenomenon to the following two
causes: (1) as analyzed in Section 3.2, SSM neglects the impact of representation magnitudes
when calculating matching score since it adopts cosine similarity function. Worse still, MF
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Table 2. Performance of Different Recommenders under Different Loss Functions

Dataset Gowalla Yelp2018 Amazon-Book Alibaba-iFashion

Recommender Loss Recall NDCG Recall NDCG Recall NDCG Recall NDCG

MF

BCE 0.1555 0.1294 0.0571 0.0464 0.0303 0.0236 0.0950 0.0439
BPR 0.1558 0.1254 0.0562 0.0454 0.0352 0.0266 0.1031 0.0483
SM 0.1777 0.1434 0.0709 0.0581 0.0515 0.0399 0.1225 0.0593
CCL 0.1837 0.1493 0.0698 0.0572 0.0559 0.0447 0.1229 0.0585

SSM 0.1231 0.0878 0.0509 0.0404 0.0473 0.0367 0.0841 0.0400

SVD++

BCE 0.1549 0.1284 0.0564 0.0459 0.0306 0.0235 0.0969 0.0458
BPR 0.1589 0.1302 0.0569 0.0458 0.0373 0.0286 0.1094 0.0509
SM 0.1852 0.1550 0.0679 0.0555 0.0478 0.0371 0.1157 0.0559
CCL 0.1819 0.1453 0.0693 0.0567 0.0557 0.0440 0.1233 0.0591
SSM 0.1669 0.1376 0.0693 0.0569 0.0547 0.0429 0.1276 0.0622

NGCF

BCE 0.1541 0.1303 0.0563 0.0463 0.0330 0.0264 0.0547 0.0238
BPR 0.1548 0.1248 0.0579 0.0477 0.0357 0.0273 0.0923 0.0416
SM 0.1766 0.1471 0.0699 0.0573 0.0486 0.0377 0.1169 0.0552
CCL 0.1778 0.1411 0.0651 0.0535 0.0516 0.0406 0.1068 0.0507
SSM 0.1854 0.1548 0.0736 0.0608 0.0552 0.0431 0.1296∗ 0.0629∗

LightGCN

BCE 0.1743 0.1491 0.0628 0.0515 0.0373 0.0292 0.0983 0.0458
BPR 0.1824 0.1554 0.0640 0.0524 0.0417 0.0322 0.1086 0.0511
SM 0.1756 0.1429 0.0708 0.0580 0.0489 0.0377 0.1155 0.0558
CCL 0.1790 0.1407 0.0669 0.0554 0.0528 0.0416 0.1203 0.0570
SSM 0.1869∗ 0.1571∗ 0.0737∗ 0.0609∗ 0.0590∗ 0.0459∗ 0.1253 0.0599

The bold indicates the best result for each recommender on each dataset. The superscript ∗ indicates the best result on
each dataset.

merely maps an ID into an embedding vector, without explicit design to adjust the magni-
tude of representations. As such, the combination of MF and SSM cannot compensate for
the flaws in adjusting the magnitude of representations and hence leads to low-quality rep-
resentation. (2) as analyzed in Section 3.1.1, SSMwill penalize the predicted score for popular
items. However, priorwork [62] has demonstrated that popularity bias can be somehowgood
if properly leveraged. Given that MF has no mechanism to leverage popularity information,
the combination of MF and SSM will under-estimate the popular items, leading to undesir-
able performance. In contrast, we have proven that message-passing methods inherently are
capable of adjusting the representation magnitude based on node degree. Therefore, paired
with a message-passing method, SSM will lead to excellent performance.

— Focusing on BPR or SSM only, we find that as the recommender becomes more complicated,
the performance improves gradually. This is in line with the intuition that adding GCN lay-
ers will capture higher-order collaborative signal which is of benefit to recommendation.
However, as we can see, the combination of SVD++ and SSM outperforms the combination
of LightGCN and BPR. This suggests that BPR is less effective to mine user preference under-
lying observed interactions. In contrast, the performance gain provided by SSM could even
be larger than that from adding GCN layers, which further justifies its effectiveness.

— Between the two graph-based recommenders, NGCF is less competitive than LightGCN
when pairedwith traditional losses, e.g., BCE and BPR. Prior studies typically attribute this to
the adoption of multiple nonlinear transformations, which increases the difficulties to train
the recommender well [7, 17]. However, armed with SSM loss, NGCF achieves an equivalent
level (e.g.,onGowalla and Yelp2018 datasets) or even better (e.g., onAlibaba-iFashion dataset)
performance compared with LightGCN. This indicates that SSM promotes the training pro-
cess of more complicated models, showing great potential for solving complex optimization
problems.
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Fig. 1. Performance comparison over different item groups among different objectives.

4.3 Long-tail Recommendation

As analyzed in Section 3.1.1, SSM is promising for alleviating the popularity bias. To verify this
property, we follow [50], splitting items into ten groups based on the frequency while keeping the
total number of interactions of each group the same. The items in groups with larger GroupIDs
have larger degrees. As such, we decompose the Recall@20 metric of the whole dataset into ten
parts, each of which represents the contribution of a single group as follows:

Recall =
1

M

M∑
u=1

∑10
д=1

���(lurec ) (д) ∩ lutest ������lutest ��� =

10∑
д=1

Recall(д), (29)

where Recall(д) measures the recommendation performance over the дth group, lurec and l
u
test are

the items in the top-K recommendation list and relevant items for user u, respectively. We report
the results in Figure 1 and have the following observations:

— Implemented on LightGCN, BCE, BPR, and SM all show a strong inclination to recommend
high-degree items, while leaving less-popular relevant items seldom exposed. We should
emphasize that the most popular group, i.e., the 10th group, only contains less than 1% of
item spaces (0.65%, 0.83%, 0.83%, 0.22%, respectively) but contributes more than 35% of the
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total Recall scores on four datasets. On the contrary, the least popular group, i.e., the 1st
group, contains most of the item spaces (25.51%, 35.70%, 31.82%, 64.43%, respectively) but
contributes less than 3% of the total Recall scores. This indicates that paired with LightGCN,
BCE, BPR, and SM hardly learn high-quality representations for long-tail items. As such,
the recommendation models suffer from popularity bias. What’s worse, the feedback loop
of recommender system will further intensify popularity bias over time, resulting in the
Matthew effect [6].

— CCL and SSM perform well on long-tail groups (those with smaller group ID), showing the
potential in alleviating popularity bias. This is consistent with our analysis in Section 3.1.1.
Making comparisons between CCL and SSM, we find CCL performs better in the groups
with the smallest group ID on three out of four datasets. In contrast, SSM exhibits stronger
competitiveness in the waist and head groups. These admit that SSM balances well on nor-
mal and long-tail recommendation tasks, that is, SSM can not only promote the exposure of
less popular items but also guarantee overall performance. Surprisingly, for SSM, the contri-
bution of each group on Amazon-Book is nearly uniformly-distributed. This again justifies
that, by suppressing the predicted scores of popular items, the representation learning sheds
more light on long-tail items, so as to establish better representations of these items.

— Another interesting observation is that: for long-tail groups, the performance rank of losses
typically exhibits the following order: pointwise loss < pairwise loss < setwise loss4; how-
ever, for the most popular group, the loss order reverses: setwise loss < pairwise loss <
pointwise loss. This suggests that the limited expressiveness of binary pointwise loss and
pairwise loss cannot fully capture user preference toward items. Instead, they adopt a con-
servative policy by recommending popular items.

4.4 Component Analysis on SSM

In this section, we move on to studying different designs in SSM. We first investigate the rational-
ity of in-batch negative sampling strategy in SSM by making comparisons among different losses
that are also equipped with in-batch negative sampling strategy. Then the influences of the nega-
tive sampling distribution and the number of negative samples are studied. After that, we present
the impact of different similarity measurements during model training and testing. Furthermore,
we conduct empirical studies on the normalization factors in message passing rules. Finally, we
numerically compare the training time of different objectives.

4.4.1 Impact of In-batch Negative Sampling Strategy. By default, SSM utilizes the in-batch neg-
ative sampling strategy to make full use of parallel computing of modern hardware. Indeed, most
sampling-based approaches (e.g., BCE, BPR, CCL) can also be equipped with this acceleration
technique. For example, we can extend BCE by assigning label “0” to other items within the
same mini-batch, compared with label “1” for the corresponding positive item, termed “BCE-
IB”. Similarly, we name the multiple-negative version of BPR with in-batch sharing strategy as
“BPR-IB”. For CCL, instead of sampling a set of individual negative items for each observed inter-
action, we simply regard other items within the same mini-batch as the set of negative items,
termed “CCL-IB”. To determine the influences and the underlying mechanism of the in-batch
negative sampling strategy, we compare SSM with the foregoing variants of different losses on
all four datasets. Table 3 records the overall performance of each loss on each dataset. Figure 2
shows the performance discrepancy of group-wise Recall@20 metric (cf. Equation (29)) between
the vanilla loss and its in-batch version. We have the following observations:

4We name the groups of SSM, SM, and CCL as the setwise loss, as they all account for a set of user-item interactions.
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Fig. 2. Performance discrepancy of different item groups among different objectives.

Table 3. Impact of the In-batch Negative Sampling Strategy

Dataset Gowalla Yelp2018 Amazon-Book Alibaba-iFashion

Loss Recall NDCG Recall NDCG Recall NDCG Recall NDCG

BCE-IB 0.1429 0.1196 0.0524 0.0427 0.0361 0.0269 0.1107 0.0526
BPR-IB 0.1225 0.0877 0.0492 0.0381 0.0470 0.0364 0.0937 0.0449
CCL-IB 0.1093 0.0771 0.0484 0.0377 0.0495 0.0404 0.0644 0.0295
SSM 0.1869 0.1571 0.0737 0.0609 0.0590 0.0459 0.1253 0.0599

The backbone model is LightGCN.

— Jointly analyzing Table 2 and Table 3, we find a significant performance drop for BCE-IB,
BPR-IB, and CCL-IB on all datasets, except BPR-IB on Amazon-Book. This admits that not
every objective function can benefit from in-batch negative sampling strategy. SSM outper-
forms all compared approaches across the board, verifying the rationality and effectiveness
of utilizing in-batch negative sampling strategy for SSM.

— Figure 2 provides clues to explain the performance fluctuations of these compared ap-
proaches. Specifically, when equipped with in-batch negative sampling strategy, all ap-
proaches exhibit better long tail recommendation accuracy, that is, for long-tail groups
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(groups with smaller ID) in Figure 2, a consistent improvement w.r.t.recall@20 is achieved
over the vanilla sampling strategy. On the contrary, the head groups suffer from serious
performance deterioration. This verifies that in-batch sampling strategy has the potential to
alleviate the popularity bias by over penalizing the prediction score of popular items, which
is consistent with our analysis in Section 3.1.1. However, this sampling strategy cannot guar-
antee the overall recommendation accuracy, which will undoubtedly limit its practical value.
In contrast, as we have analyzed in Section 3.1.3, SSM is highly consistent with the ranking
metrics, therefore can well balance the performance of normal recommendation and long-
tail recommendation.

4.4.2 Impact of Negative Sampling Distribution. As SSM is a sampling-based loss, the distribu-
tion of negative samples matters for ranking performance. Since the default in-batch negative
sampling of SSM is equivalent to sampling negative items from an empirical frequency sampler
in expectation, we here introduce a variant of in-batch negative sampling to study the impact of
negative sampling distribution. Specifically, we use a customized negative sampler as the naive
sampler does, but share the sampled N negative samples across the positive pairs in the current

batch as the in-batch negative sampling does. For ease of implementation, we letpn (i ) = f
β
i , which

balances between a uniform sampler and a frequency sampler, controlled by coefficient β ∈ [0, 1].
Other choices of pn are left as future work.

We record the fluctuation in Recall@20 as we change β from 0 to 1 at an interval of 0.1, as shown
in Figure 3. We use “SSM-0.1” to represent the temperature coefficient τ of SSM is set to 0.1, and
similar notations for others. We find that:

—With the increase in τ , the ranking metric shows a rising trend in general. This admits that
the negative sampling distribution indeed influences representation learning. Moreover, a
larger β usually implies harder negatives since popular items are sampled with a higher
probability. This also justifies the necessity of hard negative mining.

— In most cases, the best performance is achieved at β = 1.0, which supports the adoption of
in-batch negative sampling strategy due to their equivalence in expectation. However, it is
still possible to further improve the performance by fine-grained tuning the value of β . For
example, we can obtain a better performance when setting β to 0.9 on Gowalla, compared
to the results shown in Table 2.

— Comparing different curves, we can see that when fixing τ to a proper value (e.g., 0.1 on
Amazon-Book), the representation learning benefits from hard negative mining as we ana-
lyzed in Section 3.1.2. In contrast, a too large (or too small) value of τ , for example, 0.15 (or
0.05) on Amazon-Book, will lead to performance degradation as it’s difficult to distinguish
hard negative samples from easy ones (or as few too hard negatives dominate the gradient),
making the learned representation less quality.

4.4.3 Impact of Negative Sampling Number. Figure 4 shows the impact of N , the number of
negative samples, using the variant of SSM introduced in the previous section. Here, we extend BPR
by using multiple non-interacted items as negative samples. As such, the main difference between
BPR and SSM is: BPR uses inner product to measure similarity, while SSM uses temperature-aware
cosine similarity. We can see that:

— On Yelp2018 and Amazon-Book datasets, BPR enjoys the benefits of increasing the number
of negative samples. This is in line with our intuition that seeing more negative samples
during model training makes a more sophisticated recommender. However, we also observe
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Fig. 3. Impact of negative sampling distribution β and temperature coefficient τ .

performance degenerationwhenN exceeds some threshold, say 128 on Gowalla and Alibaba-
iFashion. The possible reasons are two-fold: (1) increasing the size of negative samples will
inevitably add difficulties to model optimization, especially when the supervision signal is
highly sparse, e.g., on Alibaba-iFahsion. (2) BPR regards all negative samples as equally im-
portant, regardless of their hardness, which leads to less-information gradients at training
step [37]. Another drawback of the generalized BPR we should emphasize is its training effi-
ciency. We can see later from Table 6 that the generalized BPR is more than 50x slower than
SSM for each training epoch when N = 2048 on Amazon-Book.

— The performance of SSM keeps getting better as N increases on all four datasets. Moreover,
when N becomes sufficient (e.g., N > 8 on Amazon-Book), SSM surpasses BPR, even though
the total number of negative samples is N in a mini-batch, in contrast to |B| × N of BPR,
where |B| is the size of mini-batch. Moreover, as N increases, the performance gap becomes
larger.We attribute this to the advantage of SSM inmining hard negative samples as analyzed
in Section 3.1.2.

4.4.4 Impact of Different Similarity Measurements. We find an interesting phenomenon of SSM,
which supports our claims about the necessity of adapting representation magnitudes during rep-
resentation learning. Specifically, we use LightGCN as the backbone model for SSM, and adopt
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Fig. 4. Impact of negative sampling number N .

different similarity measurement combinations for model training and testing — we use either “In-
ner Product” similarity or “Cosine” similarity in SSM duringmodel training, and use one of them to
generate predictions during testing, resulting in four different combinations. The empirical results
are shown in Table 4. We find that:

— Cosine similarity is a better choice than Inner Product similarity for SSM during training.
This is consistent with our analysis in Section 3.1.2: equippedwith temperature-aware cosine
similarity, SSM is capable of performing hard negative mining, so as to enhance the quality
of the learned representations. A nice property of Cosine similarity is that the similarity
value is bounded in the interval [−1, 1], making it easier to train.

— Compared with Cosine similarity, Inner Product similarity performs better for SSM dur-
ing testing. The underlying reason is that in addition to the angle between user and item
representations, Inner Product similarity additionally considers the magnitude of two repre-
sentations, thus making full use of the learned representations for prediction.

4.4.5 Empirical study on magnitude of item representations. By default, SSM uses the cosine
function to measure user-item similarity, which implies that item magnitudes do not contribute
to the loss and cannot guide magnitude learning. To provide empirical evidence for this claim, we
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Table 4. Performance Comparison among Different Similarity Function Combinations During

Training and Testing Phases

Similarity

Combination

Combination IP-IP IP-Cos Cos-IP Cos-Cos

training
IP � �
Cos � �

testing
IP � �
Cos � �

Performance

Gowalla
Recall 0.1085 0.0825 0.1867 0.1140
NDCG 0.0768 0.0551 0.1567 0.0794

Yelp2018
Recall 0.0468 0.0317 0.0737 0.0477
NDCG 0.0369 0.0241 0.0609 0.0371

Amazon-Book
Recall 0.0435 0.0358 0.0590 0.0491
NDCG 0.0336 0.0272 0.0459 0.0381

Alibaba-iFashion
Recall 0.0749 0.0236 0.1253 0.0629
NDCG 0.0357 0.0095 0.0599 0.0269

“IP” indicates “Inner Product” similarity while “Cos” indicates “Cosine” similarity. We report Recall@20

metric on four datasets.

conducted a study comparing the item representation magnitudes learned by SSM and BPR, using
MF and LightGCN as backbones, creating four models: “MF-SSM”, “LightGCN-SSM”, “MF-BPR”,
and “LightGCN-BPR”. To ensure fair comparisons and avoid the impact caused by the L2 regu-
larization term, we removed it from the objective function and fixed the number of epochs to 50.
We split items into ten groups based on frequency while keeping the total number of interactions
of each group the same, then record the average magnitude of items within each group. Figure 5
shows the results on different datasets. We can observe that:

—When using MF as the backbone, the curve of item magnitude learned by SSM within dif-
ferent groups is flat, which confirms that SSM cannot adjust the item magnitude. However,
graph-based models (e.g., LightGCN) can adjust item magnitude itself, compensating for the
shortcoming of SSM and achieving excellent performance (cf. Table 2).

— BPR uses inner product as the similarity function, which allows it to adjust the magnitude
of items during training. However, this can lead to popularity bias, especially for graph-
based models such as LightGCN-BPR, where popular items typically obtain much larger
magnitudes and hence have larger similarity scores. This makes popular items even more
popular and results in suboptimal performance.

4.4.6 Empirical Study on Message Passing Strategy. As analyzed in Section 3.2.2, the normaliza-
tion factors α0 and α1, which determine the message passing rule, play important roles in adjusting
themagnitude of learned representations. To see howα0 andα1 influence the ranking performance,
we adopt SVD++ which can be viewed as the simplest message-passing-based method as the back-
bone model, and train it using SSM. Note that the vanilla SVD++ only propagates messages on the
user side, here we introduce a variant that only propagates messages on the item side. Similar to
the formulae of vanilla SVD++ on the user side, we define the propagation rule of SVD++ on the
item side as follows:

pu = p
(0)
u , qi = q

(0)
i +

∑
u ∈Pi

1

|Pi |α0 |Pu |α1
p (0)
u , (30)
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Fig. 5. Empirical study on the magnitude of item representations learned by BPR and SSM.

where p (0)
u (or q (0)

i ) and pu (or qi ) are the ID embedding and final representation of user u (or item
i), respectively. Table 5 shows the Recall@20 and NDCG@20 metrics on all four datasets. We can
observe that:

—With different values of α0 and α1, the ranking performance varies considerably. Typically,
compared with α1, changing the value of α0 will cause larger performance fluctuations. This
is in line with our analyses that α0 determines the order of the representation magnitude
while α1 influences its multiplication factor.

— The best choices of α0 and α1 are different in user-side SVD++ and item-side SVD++. More
specifically, on all datasets, the best performance of user-side SVD++ is achieved when α0 =
1.0 and α1 = 0. While for item-side SVD++, α0 = α1 = 0.5 is the best option across four
datasets.

— On Gowalla, Yelp2018, and Amazon-Book datasets, item-side SVD++ can obtain better per-
formance than user-side SVD++, which is in contrast to the case on Alibaba-iFashion.

4.4.7 Efficiency Comparison. We study the training efficiency of SSM. Specifically, we conduct
experiments on the same Nvidia Titan RTX graphics card equipped with an Inter i7-9700K CPU (32
GBMemory). We compare them under the same implementation framework based on TensorFlow,
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Table 5. Impact of Message Passing Strategy

Propagation Side User Item

Setting of [α0,α1] [0.5,0] [0.5,0.5] [1.0,0] [0.5,0] [0.5,0.5] [1.0,0]

Performance

Gowalla
Recall 0.1156 0.1184 0.1672 0.1746 0.1875∗ 0.0969
NDCG 0.0855 0.0828 0.1373 0.1461 0.1567∗ 0.0656

Yelp2018
Recall 0.0446 0.0503 0.0685 0.0682 0.0737∗ 0.0408
NDCG 0.0349 0.0392 0.0565 0.0565 0.0611∗ 0.0311

Amazon-Book
Recall 0.0466 0.0489 0.0543 0.0463 0.0560∗ 0.0455
NDCG 0.0366 0.0382 0.0427 0.0365 0.0440∗ 0.0360

Alibaba-iFashion
Recall 0.1212 0.1050 0.1272∗ 0.1202 0.1213 0.0596
NDCG 0.0592 0.0505 0.0622∗ 0.0574 0.0577 0.0261

“User” indicates propagating messages on the user side, while “Item” indicates propagating messages on the item side.

Table 6. Efficiency Comparison on Amazon-Books using a

Three-layer LightGCN as Backbone Model

Loss Time/Epoch Best Epoch Total Time

BCE (N = 4) 268s 61 4h32m

BPR (N = 1) 48s 700 9h20m

BPR (N = 2048) 1,983s 45 24h47m

SM 81s 29 39m

CCL (N = 2048) 124s 34 1h10m

SSM (N = 2048) 39s 21 13m

N is the number of negative samples.

using the same acceleration methods (i.e., accelerating the sampling with C++) to ensure fairness.
The backbone model is a three-layer LightGCN. The results are reported in Table 6. We can find
that equipped with in-batch negative sampling and temperature-aware cosine similarity, SSM is
much more efficient than other baselines in both the average training time per epoch and the
number of epochs to reach the best performance, meanwhile achieving the leading performance
(cf. Table 2). Surprisingly, SM achieves the second-best training efficiency on the Amazon-Book
dataset. However, as mentioned previously, computing SM can be computationally expensive for
large datasets since it involves exponentiating all the scores of candidate items. To verify this, we
enriched the candidate item pool with a preset number (#Paddings in Table 7) while keeping the
training and testing samples unchanged. We then recorded the GPU memory and time cost per
epoch of SM and SSM using a three-layer LightGCN as the backbone model on the Amazon-Book
dataset, as shown in Table 7. Our results demonstrate that the time cost of SM increases linearly
as the number of padding items increases. When the padding number reaches 500,000, SM suffers
from out-of-memory (OOM) errors. In contrast, SSM’s memory cost is low, and the running time
remains almost unchanged across different numbers of padding items. These findings indicate that
SSM is more efficient than SM in terms of memory usage and may be a better choice when dealing
with real-world large-scale recommender systems.

5 RELATEDWORK

In this section, we review the popular objective functions for item recommendation, which cast
the task into a supervised learning problem.
Many traditional item recommendation methods perform learning by minimizing the point-

wise divergence of the reconstructed interaction matrix from the observed interaction matrix. Ac-
cording to the way the divergence is defined, pointwise losses can be further categorized into
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Table 7. Memory Cost Comparison on Amazon-Books using a Three-layer

LightGCN as Backbone Model

#Paddings
SM SSM

GPU Memory Time/Epoch GPU Memory Time/Epoch

0 4,865 M 81 s 1,793 M 39 s
100,000 5,873 M 132 s 1,793 M 41 s
200,000 9,973 M 183 s 2,801 M 42 s
300,000 9,973 M 231 s 2,801 M 43 s
400,000 10,993 M 280 s 2,801 M 44 s
500,000 OOM - 2,801 M 45 s

mean square error loss [21, 26, 32, 59], binary cross-entropy loss [19, 41], and hinge loss [39], to
name a few. However, for item recommendation, the primary goal is not to score the interaction
exactly to 1 or 0. Instead, the relative ordering of a positive item over an unobserved item is of
central importance. Toward this goal, pairwise losses are proposed to optimize the preference
structure consistency between the reconstructed interaction matrix from the observed interaction
matrix. Specifically, pairwise losses treat training data as a set of triplet instances {(u, i, j )} to cap-
ture the intention that user u prefers to positive item i over irrelevant item j. BPR [38] is one
of the most popular pairwise losses in item recommendation which is proven to optimize AUC
scores. WARP [47] is another pairwise algorithm customized for item recommendation. It encour-
ages the predicted score of positive item larger than that of negative item above a margin, which is
in line with the hinge loss. Similarly, [34] proposed a max-margin hinge ranking loss to minimize
the ranking risk in the reconstructed matrix. [22] devised a pairwise MSE loss that computes the
relative difference between the actual non-zero and zero entries and the difference between their
corresponding predicted entries.
Besides pointwise losses and pairwise losses, a third option for item recommendation is tomodel

the recommendation predictions over all items into a probability distribution that is normalized us-
ing a softmax function, termed the softmax loss [36]. It’s worthmentioning that in the community
of Learning-to-Ranking, this type of loss function is generally termed list-wise loss [5, 52]. We will
not go deep into it since it is not within the scope of this work. Prior work [4] verified that softmax
loss aligns well with the ranking metrics. However, calculating the partition function of softmax is
computationally costly. A substitute for softmax loss is SSM loss which reduces the computational
cost by employing the partition function only on a small subset of negatives. However, common
view on SSM loss is that it’s a biased version of full softmax loss which can be corrected by logQ
correction [2]. Agreeing with this point of view, some follow-on works in recommendation devise
different methods to get unbiased estimation [1, 3, 45, 53, 57]. For example, Blanc and Rendle [3]
proposed a divide and conquer algorithm to estimate the proposal distribution with kernel based
sampling strategy. Yi et al. [57] presented a method to estimate item frequency for streaming data
without requiring fixed item vocabulary. Wang et al. [45] devised a cross-batch negative sampling
with the FIFO memory bank to improve the accuracy of estimating item distribution by enlarging
the number of negative samples.
Most recently, a surge of works introduced contrastive loss like InfoNCE loss into recommenda-

tion [31, 42, 50, 60, 63]. At its core is maximizing the agreement of positive pairs as compared with
that of negative pairs. Interestingly, when directly utilizing the supervision signal (whether the
interaction is observed) of the data to construct positive and negative pairs, InfoNCE loss becomes
SSM loss. However, to the best of our knowledge, only very limited works [30, 42, 63] utilized SSM
loss as their main task objective to train recommendation model. Zhou et al. [63] proved that both
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contrastive loss and multinomial IPW loss optimize the same objective in principle but failed to
answer why contrastive loss works. Liu et al. [30] presented a debiased contrastive loss to remedy
the negative effects of false negative samples in the randomly sampled subset. MSCL [42] is mostly
related to our work which also realized the superiority of using SSM loss to train recommender.
However, it differs from our work in: (1) MSCL [42] only empirically verified the effectiveness of
SSM loss for graph-based recommender. In contrast, we theoretically reveal three advantages of
SSM loss, that is, mitigating popularity bias, mining hard negative samples, and maximizing the
ranking metrics; (2) We also uncover the shortcomings of SSM loss in adjusting the representation
magnitudes and present theoretical evidence to support our argument.

6 CONCLUSION AND FUTURE WORK

In this work, we present insightful analyses of SSM for item recommendation. Firstly, we theo-
retically disclose model-agnostic advantages of SSM in mitigating popularity bias, mining hard
negative samples, and maximizing ranking metrics. We then probe the model-specific character-
istics of SSM and point out its potential shortcoming in adjusting representation magnitudes. To
justify our argument, we further show that message passing based methods are capable of adjust-
ing magnitude. We conducted extensive experiments on four benchmark datasets, demonstrating
the superiority of training history- and graph-based models using SSM for both normal and long
tail recommendation tasks.
We believe the comprehending of SSM is inspirational to future developments of recommen-

dation community. In future work, we would like to further refine and augment the capabilities
of SSM. A key area of focus will be enhancing its robustness through distributionally robust op-
timization [48, 54]. We also plan to explore the applicability of SSM to a wider range of model
architectures, such as the diffusion model [55]. Moreover, since practical recommender systems
usually involve rich side information, exploring the potential of SSM for feature-based CTR mod-
els is another promising direction.
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