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In graph classification, attention- and pooling-based graph neural networks (GNNs) predominate to extract
salient features from the input graph and support the prediction. They mostly follow the paradigm of “learn-
ing to attend,” which maximizes the mutual information between the attended graph and the ground-truth
label. However, this paradigm causes GNN classifiers to indiscriminately absorb all statistical correlations
between input features and labels in the training data without distinguishing the causal and noncausal ef-
fects of features. Rather than emphasizing causal features, the attended graphs tend to rely on noncausal
features as shortcuts to predictions. These shortcut features may easily change outside the training distribu-
tion, thereby leading to poor generalization for GNN classifiers. In this article, we take a causal view on GNN
modeling. Under our causal assumption, the shortcut feature serves as a confounder between the causal fea-
ture and prediction. It misleads the classifier into learning spurious correlations that facilitate prediction in
in-distribution (ID) test evaluation while causing significant performance drop in out-of-distribution (OOD)
test data. To address this issue, we employ the backdoor adjustment from causal theory—combining each
causal feature with various shortcut features, to identify causal patterns and mitigate the confounding effect.
Specifically, we employ attention modules to estimate the causal and shortcut features of the input graph.
Then, a memory bank collects the estimated shortcut features, enhancing the diversity of shortcut features
for combination. Simultaneously, we apply the prototype strategy to improve the consistency of intra-class
causal features. We term our method as CAL+, which can promote stable relationships between causal esti-
mation and prediction, regardless of distribution changes. Extensive experiments on synthetic and real-world
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OOD benchmarks demonstrate our method’s effectiveness in improving OOD generalization. Our codes are
released at https://github.com/shuyao-wang/CAL-plus.
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1 INTRODUCTION

Graph neural networks (GNNs) [12, 33] have demonstrated remarkable performance in graph
classification across various domains, including chemical molecules, social networks, and transac-
tion graphs. This success is primarily attributed to the powerful representation learning of GNNs,
which incorporates graph structure and encodes it into representations through an end-to-end pro-
cess. Consequently, it is essential to highlight the critical aspects of the input graph while filtering
out trivial components [45, 70, 71, 75]. For instance, when classifying the mutagenic properties
of a molecular graph [50], GNNs should focus on functional groups (i.e., nitrogen dioxide (NO2))
rather than irrelevant patterns (i.e., carbon rings) [9, 15, 16, 86]. Similarly, when detecting fraud
in a transaction network, malicious behaviors or user coalitions are more informative than benign
features [19–21].

To identify critical parts in graphs, subsequent studies [18, 32, 62, 68, 84] adopt the “learning to
attend” paradigm [67, 78], which maximizes the mutual information between the attended graph
and the ground-truth label to find the attended graph that optimizes the predictive performance.
This paradigm consists of two research lines:

— Attention-based methods [4, 32, 44, 66, 68]. These methods often employ attention modules
for nodes or edges to locate the attended graphs. These attention modules function as soft
masks, identifying the importance of each edge and node for the final representations and
predictions.

— Pooling-based methods [18, 37, 84, 89]. These methods mainly use hard masks to select a
subset of nodes or edges as the attended graphs for information propagation.

These attended graphs aim to capture features that contribute to minimizing training loss, rather
than differentiating between causal and non-causal effects.

Unfortunately, recent studies [8, 17, 22] have revealed that current attention and pooling learn-
ing methods are susceptible to exploiting shortcut features for predictions. These shortcuts often
arise from data selection biases, noisy features, or trivial patterns in graphs, which, although non-
causal, are discriminative in training data. The presence of these shortcuts allows models to capture
them and complete classification tasks without learning causal features. For instance, instead of
investigating the causal effect of functional groups, attended graphs may rely on “carbon rings” as
cues for the “mutagenic” class, because most training “mutagenic” molecules occur in the context
of “carbon rings.” While these correlations represent statistical relationships inherent in the train-
ing data and benefit in-distribution (ID) test evaluations, they inevitably result in significant
performance declines in out-of-distribution (OOD) test data that differ from the training distri-
bution. Using molecule classification as an example, when most test “non-mutagenic” molecules
appear in the context of “carbon rings,” the attended graphs mislead GNNs into predicting “mu-
tagenic.” Since it is often unrealistic to assume that test data conform to the training distribution
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in real-world scenarios, the poor generalization of these methods obstructs their application in
critical situations.

To address this issue, we first examine the decision-making process of GNNs for graph classifi-
cation from a causal perspective, which outlines the relationships among causal features, shortcut
features, and predictions. Under our causal assumption illustrated in Figure 1, the shortcut feature
acts as a confounder [54], creating a backdoor path [53] that leads to a spurious correlation be-
tween the causal feature and predictive label, such as misclassifying “non-mutagenic” molecules
with “carbon rings” as “mutagenic” molecules. Therefore, mitigating the confounding effect holds
promise for leveraging causal features while filtering out shortcut patterns, ultimately improving
the generalization.

Towards this end, we propose CAL+ framework, an improved version of our existing Causal At-

tention Learning (CAL) method [63]. Inspired by backdoor adjustments in causal theory [53, 54],
CAL+ aims to maximize the causal effect of the attended graph on predicting labels while mini-
mizing the confounding effect of shortcut features. First, we apply attention modules to generate
estimations of causal and shortcut features from input graphs. Then, we combine each causal
estimation with various shortcut estimations, ensuring these combinations maintain stable predic-
tions. To guarantee the diversity of shortcut features in the combined data, we employ a memory
bank to collect them. Simultaneously, we use a prototype strategy to preserve the consistency
of intra-class causal features, constraining the representations of estimated causal features. Con-
sequently, causal estimations are encouraged to approach the causal features in the graph (e.g.,
nitrogen dioxide), while their complements target the shortcut features (e.g., carbon rings). CAL+
promotes invariant relationships between causal patterns and predictions, regardless of changes in
shortcut parts or distribution shifts. In summary, this article offers the following key contributions:

— We highlight the poor generalization issue in current attention- and pooling-based GNNs
for graph classification. From the causal perspective, we ascribe such an issue to the con-
founding effect of the shortcut features.

— We introduce a novel learning framework, CAL+, for graph classification. Inspired by back-
door adjustments in causal theory, CAL+ enables GNNs to utilize causal features for predic-
tions while minimizing the confounding effect of shortcut features.

— We perform comprehensive experiments on OOD benchmarks and compare our approach
with various baselines. The results validate the effectiveness of CAL+. Additionally, detailed
visualizations and analyses demonstrate the interpretability and rationality of our method.

Building upon previous work, CAL [63], we detail the main differences in the following three
aspects:

— Enhanced Methodology. The CAL+ model offers two key improvements over the base
CAL model. (1) Memory Bank Module. Backdoor adjustment requires the combination of
each causal feature with a stratification of the confounder, which involves traversing vari-
ous types of shortcut features in the dataset. In CAL, the types of shortcut features are con-
strained to each mini-batch, substantially limiting their diversity and making the backdoor
adjustment less effective. Increasing the batch size only offers limited diversity while sig-
nificantly raising training memory consumption. To address this issue, we utilize a memory
bank to store and sample shortcut features, effectively increasing their diversity for adequate
combinations. (2) Prototype Module. Causal features of the same class should exhibit similar
representations [8, 48, 90]. However, CAL does not account for intra-class representation
relationships, resulting in inaccurate or unstable causal feature estimations. To resolve this,
we define a prototype for each class and encourage causal representations to be close to
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their respective class-wise prototypes. This strategy enhances the consistency of intra-class
causal features and ensures more accurate and stable estimations.

— Fuller Explanations and Discussions. Inspired by recent studies [6, 7, 46], we delve into
the foundational assumptions regarding the identifiability of causal features. These assump-
tions are critical, as they delineate the conditions essential for the effective application of
our method. Furthermore, we present the Structural Causal Models (SCMs) established
in related studies [8, 13, 22, 75] and compare them with our approach, highlighting both
differences and connections. Finally, we also include the time complexity analysis of our
method.

— Comprehensive Evaluations. We have made significant revisions to the experimental sec-
tion compared to previous work. (1) Additional baselines. The baselines in CAL are insuffi-
cient, as it only compares mainstream GNNs for graph classification, such as attention- or
pooling-based GNNs. In contrast, we include 12 recent baselines in this work, comprising
general generalization methods, graph generalization methods, and graph data augmenta-
tion methods. (2) More OOD datasets. The datasets in CAL are insufficient. Besides synthetic
datasets, CAL only employs commonly used datasets such as NCI1, COLLAB [50], and so
on. However, these datasets exhibit minimal distribution shifts. Consequently, we remove
these experiments and incorporate new OOD datasets. These datasets are generated based
on specific graph characteristics, presenting evident distribution shift issues. In addition, we
have added more detailed and comprehensive analyses, including ablation studies, hyperpa-
rameter sensitivity analysis, running-time statistics, and visualization experiments.

2 PRELIMINARIES

2.1 Notations

We denote a graph by д = {A,X} with the node setV and edge set E. Let X ∈ R |V |×F be the node
feature matrix, where xi = X[i, :] is the F-dimensional attribute vector of nodevi ∈ V . We use the
adjacency matrix A ∈ R |V |×|V | to delineate the whole graph structure, where A[i, j] = 1 if edge
(vi ,vj ) ∈ E, otherwise A[i, j] = 0. We define GConv(·) as a GNN layer module and denote the
node representation matrix by H ∈ R |V |×d , whose ith row hi = H[i, :] denotes the representation
of node vi .

2.2 Attention Mechanism in GNNs

In GNNs, attention can be defined over edges or nodes. For edge-level attentions [4, 32, 39, 66, 68],
they utilize weighted message passing and aggregation to update node representations H′:

H′ = GConv (A �Ma ,H) , (1)

where Ma ∈ R
|V |×|V | denotes the attention matrix that is often derived from trainable param-

eters and node representations. For node-level attention, several studies [34, 37, 44] define the
self-attention mask to select the most attentive node representations:

H′ = GConv (A,H �Mx ) , (2)

where Mx ∈ R
|V |×1 represents the node-level attentions, which can be generated by a network

(e.g., GNNs or MLPs); � is the broadcasted element-wise product. Hereafter, we can make further
pooling operation [37] for the output node representations Hout and summarize the graph repre-
sentation hд for graph д via the readout function freadout(·). Then, we use a classifier Φ to project
the graph representation into a probability distribution zд :

hд = freadout
(
{hout

i |i ∈ V}
)
, zд = Φ(hд). (3)
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These methods follow the paradigm of “learning to attend” by minimizing the following empirical
risk:

LCE = −
1

|Dtr |

∑
д∈Dtr

y�д log(zд), (4)

where LCE is the cross-entropy loss over the training dataset Dtr , and yд is the ground-truth
label vector ofд. This learning strategy, known as Empirical Risk Minimization (ERM), heavily
relies on the statistical correlations between input graphs and labels. Consequently, these methods
inevitably capture noncausal shortcut features for making predictions.

2.3 OOD Issue in Graph Classification

In graph classification, we typically train a GNN model using a training dataset Dtr and predict
labels in a test datasetDte .Dtr andDte are independently sampled from the training distribution
Ptr and test distribution Pte , respectively. When Ptr = Pte , ERM-based models usually perform
well, even though they may rely on shortcuts for predictions. However, the test environment is
often unknown and unstable in real-world scenarios, resulting in Ptr � Pte , which leads to distri-
bution shift or out-of-distribution (OOD) issues. For instance, in molecular property prediction
tasks, we generally use past molecules as training data, hoping that the model can predict proper-
ties of molecules in new environments in the future. In such OOD evaluation scenarios, shortcuts
may not often exist, leading to a significant performance degradation.

2.4 do-Calculus in Causal Inference

Causal inference [26, 27, 52–55] enables researchers to understand and predict the effects of inter-
ventions in various systems. A fundamental concept within this domain is “do-calculus” [53–55].
It provides a formal language for expressing and resolving queries about causal relationships. This
operator is used to denote a hypothetical intervention where one or more variables in a system are
set to specific values, irrespective of their original causal relationships. The calculus consists of a
set of rules that allow for the manipulation of probability expressions involving the do-operator.
These rules enable the transformation of causal questions into statistical estimations, a process
pivotal in discerning causal effects from observational data. A key aspect of applying do-calculus
is the identification of appropriate variables to adjust for confounding. This leads to the concept of
the “backdoor criterion.” The criterion provides a method to identify a set of variables, known as
a backdoor adjustment set, which, when controlled for, can eliminate the bias due to confounding.
The backdoor criterion essentially ensures that the adjusted causal effect is not influenced by back-
door paths (indirect paths) between the intervention and the outcome. The process of backdoor
adjustment involves conditioning on the selected set of variables. This is typically done through
statistical techniques such as stratification or regression. By controlling for these backdoor paths,
the causal effect of the intervention on the outcome is isolated, allowing for more accurate estima-
tion of the causal relationship. In machine learning, do-calculus and backdoor adjustments play a
crucial role in the design and interpretation of models, particularly in observational studies where
randomized control trials are not feasible. We provide more discussion of various applications of
causal inference in Section 5.3.

3 METHODOLOGY

In this section, we first analyze the GNN learning from the perspective of causality. From our
causal assumption, we identify the shortcut feature as a confounder. Then, we propose the causal
attention learning strategy to alleviate the confounding effect.
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3.1 A Causal View on GNNs

We take a causal look at the GNN modeling and construct a Structural Causal Model (SCM)[54]
in Figure 1. It presents the causalities among five variables: graph dataG, causal featureC , shortcut
feature S , graph representation R, and prediction or ground-truth label Y . Note that our SCM de-
scribes the model’s forward process, soY can represent both the prediction and ground-truth label,
as they are optimized to be the same through the training process. The link from one variable to
another indicates the cause-effect relationship: cause→ effect. We list the following explanations
for SCM:

—C ← G → S . The variable C denotes the causal feature that truly reflects the intrinsic
property of the graph data G. While S represents the shortcut feature that is usually caused
by the data biases or trivial patterns. Since C and S naturally coexist in graph data G, these
causal effects are established.

—C → R ← S . The variable R is the representation of the given graph data G. To generate R,
the conventional learning strategy takes the shortcut feature S and causal featureC as input
to distill discriminative information.

— R → Y . The ultimate goal of graph representation learning is to predict the properties of the
input graphs. The classifier will make prediction Y based on the graph representation R.

Scrutinizing this SCM, we recognize a backdoor path betweenC andY , i.e.,C ← G → S → R → Y ,
wherein the shortcut feature S plays a confounder role between C and Y . Even if C has no direct
link to Y , the backdoor path will cause C to establish a spurious correlation with Y , e.g., making
wrong predictions based on shortcut feature S instead of causal feature C . Hence, it is crucial to
cut off the backdoor path and make the GNN exploit causal features.

3.2 Backdoor Adjustment

Fig. 1. Structural causal model for graph classification. We use

Y for prediction or ground-truth label, as they are optimized

to be the same.

We have realized that shielding the
GNNs from the confounder S is the key
to exploiting causal features. Instead
of modeling the confounded P(Y |C) in
Figure 1, we should achieve the graph
representation learning by eliminating
the backdoor path. But how to achieve
this? Fortunately, causal theory [53, 54]
provides us with a feasible solution:
We can exploit the “do-calculus” on the
variableC to remove the backdoor path
by estimating Pm(Y |C) = P(Y |do(C)). It needs to stratify the confounder S betweenC andY . There-
fore, we can obtain the following three essential conclusions:

— The marginal probability P(S = s) is invariant under the intervention, because the shortcut
feature will not be affected by cutting off the backdoor path. Thus, we have P(s) = Pm(s).

— The conditional probability P(Y |C, s) is invariant, because YâĂŹs response to C and S has
nothing to do with the causal effect between C and S . Then, we can get: Pm(Y |C, s) =
P(Y |C, s).

— Obviously, the variables C and S are independent under the intervention, which we have:
Pm(s |C) = Pm(s).
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Based on the above conclusions, we have:

P(Y |do(C))=Pm(Y |C)

=
∑
s ∈T

Pm(Y |C,s)Pm(s |C) (BayesRule)

=
∑
s ∈T

Pm(Y |C,s)Pm(s) (Independency)

=
∑
s ∈T

P(Y |C, s)P(s),

(5)

where T denotes the confounder set; P(Y |C, s) is the conditional probability given the causal fea-
ture C and confounder s; P(s) is the prior probability of the confounder. Equation (5) is usually
called backdoor adjustment [53], which is a powerful tool to eliminate the confounding effect.
However, there exist two challenges for implementing Equation (5): (i) The confounder set T is
commonly unobservable and hard to obtain. (ii) Due to the discrete nature of graph data, it seems
difficult to directly manipulate the graph data, conditioning on domain-specific constraints (e.g.,
valency rules in molecule graphs). In Section 3.4.3, we will introduce a simple yet effective solution
to overcome these issues.

3.3 Causal and Trivial Attended-graph

Given a graph д = {A,X}, we formulate the soft masks on the graph structure and node feature as
Ma ∈ R

|V |×|V | and Mx ∈ R
|V |×1, respectively. Wherein, each element of the masks indicates the

attention score relevant to the task of interest, which often falls into the range of (0, 1). Given an
arbitrary mask M, we define its complementary mask as M = 1−M, where 1 is the all-one matrix.
Therefore, we can divide the full graph д into two attended-graphs: д1 = {A � Ma ,X � Mx } and
д2 = {A �Ma ,X �Mx }.

With the inspection on the data-generating process, recent studies [34, 45, 75, 83] argue that the
label of a graph is usually determined by its causal part. Considering a molecular graph, its muta-
genic property relies on the existence of relevant functional groups [70]; taking the digit image in
the form of superpixel graph as another example, the coalition of digit-relevant nodes determines
its label. Formally, given a graph д, we define the attended graph collecting all causal features as
the causal attended-graph дc , while the counterpart forms the trivial attended-graph дt . However,
the ground-truth attended-graph is usually unavailable in real-world applications. Hence, we aim
to capture the causal and trivial attended-graph from the full graph by learning the masks: дc =

{A�Ma ,X�Mx } andдt = {A�Ma ,X�Mx }. Learning to identify causal attended-graphs not only
guides the representation learning of GNNs, but also answers “What knowledge does the GNN use
to make predictions?,” which is crucial to the applications on explainability, privacy, and fairness.

3.4 Causal Attention Learning

To implement the backdoor adjustment, we propose the Causal Attention Learning Plus

(CAL+) framework.

3.4.1 Attention Score Generation. Towards effective causal intervention, it is necessary to sep-
arate the causal and shortcut features from the full graphs. To this end, we hire attention modules,
which yield two branches for the causal and trivial proposals. Given a GNN-based encoder f (·)
and a graph д = {A,X}, we can obtain the node representations:

H = f (A,X). (6)
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Then, we adopt two MLPs, MLPnode(·) and MLPedge(·), to generate the attention scores (i.e., soft-
masks) from two orthogonal perspectives: node-level and edge-level. For nodevi and edge (vi ,vj ),
we can obtain:

αci
,αti
= σ

(
MLPnode(hi )

)
, (7)

βci j
, βti j

= σ
(
MLPedge(hi | |hj )

)
, (8)

where σ (·) is softmax function, | | denotes concatenation operation; αci
, βci j

represent the node-
level attention score for nodevi and edge-level attention score for edge (vi ,vj ) in causal attended-
graph; analogously, αti

, βti j
are for trivial attended-graph. Note that αci

+αti
= 1, and βci j

+βti j
= 1.

These attention scores indicate how much the model pays attention to each node or edge in the
corresponding attended-graph. Now, we can construct the soft masks Mx , Mx , Ma , and Ma based
on the attention scores αci

, αti
, βci j

, and βti j
, respectively. Finally, we can decompose the graph д

into the initial causal and trivial attended-graphs: дc = {A �Ma ,X �Mx } and дt = {A �Ma ,X �

Mx }.

3.4.2 Causal Disentanglement. Until now, we have distributed the attention scores at the gran-
ularity of nodes and edges to create the initial attended-graphs. Now, we need to make the causal
and trivial attended-graphs to capture the causal and shortcut features from the input graphs, re-
spectively. Specifically, we adopt two GNN layers to obtain the representations of attended-graphs
and make predictions via readout function and classifiers:

hдc
= freadout

(
GConvc

(
A�Ma ,X�Mx

) )
, zдc

=Φc (hдc
), (9)

hдt
= freadout

(
GConvt

(
A�Ma ,X�Mx

) )
, zдt

=Φt (hдt
). (10)

To encourage causal attended-graphs to approximate causal features, we need to further constrain
their representations. By examining the properties of causal features, we can observe that causal
features of the same class should originate from the same prototypical features. For instance, water-
soluble molecules tend to have “-OH” functional groups, while acidic molecules usually exhibit
“-COOH”-based patterns. A prevalent approach is to learn a class-specific context that provides a
global overview of each class, which is referred to as the prototype vector. Specifically, for graphs in

class i , we register the prototype vector p
(t−1)
i at training step t −1. Then, we update the prototype

p
(t )
i in the next step by calculating the similarity between the each causal representation h

(t )

дc ,k
and

p
(t−1)
i . Formally, given K causal features in each class at training step t , we have:

s(t )
k
= cosine

(
h
(t )

дc ,k
, p
(t−1)
i

)
, w (t )

k
=

exp(s(t )
k
/τ )

∑K
k=1 exp(s(t )

k
/τ )
,

p
(t )
i =

K∑
k=1

w (t )
k
· h
(t )

дc ,k
,

(11)

where τ denotes the temperature parameter; cosine refers to the cosine similarity. In particular, we

initialize p
(0)
i to be the average of the vectors at the initial training step t = 0. Then, we define the

following loss to ensure the consistency of causal representations within class i:

�pro(д) = −log
exp(hдc

· pi )∑C
i=1 exp(hдc

· pi )
, (12)

whereC is the class number. On the one hand, we also need to utilize supervisory signals to ensure
the correctness of predictions based on causal estimations. So, we should classify their represen-
tations to ground-truth labels. On the other hand, the trivial attended-graph aims to approach
the trivial patterns that are unnecessary for classification. We push its prediction evenly to all
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categories, which means that the distribution of prediction is required to conform to the prior
distribution of uniform. Hence, we define the following losses for causal and trivial estimations:

�sup(д) = −y�д log(zдc
), �unif (д) = KL(yunif , zдt

), (13)

where KL denotes the KL-Divergence, yunif represents the uniform prior distribution. Then, we
can define our objective for causal disentanglement as:

Ldis = E(д,yд )∼Dtr [�sup(д) + ρ1�pro(д) + ρ2�unif (д)], (14)

where ρ1 and ρ2 are hyperparameters that determine the strength of disentanglement for causal
features and trivial features, respectively. By optimizing Equation (14), we can approximately dis-
entangle causal and trivial parts from the data, and through subsequent causal intervention, we
will be able to distinguish them more accurately. Note that prior efforts [34, 45, 70, 71, 83] have
shown that the mutual information between the causal part and label is greater than that between
the full graph and label, due to the widespread trivial patterns or noise. Hence, the proposed disen-
tanglement objective will not make the captured causal attended-graph converge to the full graph
(noiseless full graph is a special case), which is not an optimal solution. See Section 4.5 for more
supporting evidence and analyses.

3.4.3 Causal Intervention. As shown in Equation (5), one promising solution to alleviating the
confounding effect is the backdoor adjustment—that is, stratifying the confounder and pairing
the target causal attended-graph with every stratification of trivial attended-graph to compose
the “intervened graphs.” However, due to the irregular graph data, it is impossible to make the
intervention on data-level, e.g., changing a graph’s trivial part to generate a counterfactual graph
data. Towards this end, we make the implicit intervention on representation-level and propose the
following loss guided by the backdoor adjustment:

zд′ = Φ(hдc
+ hдt ′

), (15)

Lcau = −
1

|Dtr | · |T̂ |

∑
д∈Dtr

∑

t ′ ∈T̂

y�д log (zд′ ), (16)

where zд′ is the prediction from a classifier Φ on “implicit intervened graph” д′; hдc
is the rep-

resentation of causal attended-graph дc derived from Equation (9); while hдt ′
is the representa-

tion of stratification дt ′ obtained via Equation (10); T̂ is the estimated stratification set of the
trivial attended-graph, which need to collect the appearing trivial features from training data. An
ideal backdoor adjustment requires traversing various types of shortcut features that appear in the
dataset. However, during training process, model parameters are usually updated through mini-
batch. The types of shortcut features are constrained to each mini-batch, substantially limiting
their diversity and making the backdoor adjustment less effective. Increasing the batch size only
offers limited diversity while significantly raising training memory consumption.

To address this issue, we utilize memory bank strategy [24, 77] to store shortcut features. Specif-
ically, we define V = {vi } as a memory bank. In each training step, we can feed more data (i.e.,
N times the batch size) into the model and collect the representations of shortcut features {hдt

}.
Then, we update and store these representations intoV = {hдt

→ vi }. In the intervention stage,
we can implement Equation (16) by combining the causal features with representations of various
shortcut features in V . We can find that this storage strategy can greatly improve the diversity
of shortcut features in the process of causal intervention, thus making backdoor adjustment more
effective. Finally, the objective of CAL+ can be defined as:

L = Ldis + λLcau, (17)
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Fig. 2. The overview of the proposed CAL+ framework.

where λ is the hyperparameter that determines the strength of causal intervention. The overview
of the proposed CAL+ is depicted in Figure 2.

3.5 Assumptions and More Discussions

In this section, we delve into the assumptions underpinning our approach, contrast our structural
causal model with existing literature, and examine the time complexity of our proposed algorithm.

3.5.1 Potential Assumptions. Recent studies [6, 7, 46] highlight that prevailing methods in in-
variant learning or causal learning are predicated on certain critical assumptions. The absence of
these assumptions undermines the efficacy of existing invariance learning techniques. Notably,
Assumption 3.3 from Reference [6] asserts that invariant subgraphs must maintain invariance
across diverse environments Pe1 (Y |Gc ) = Pe2 (Y |Gc ). However, this invariance falters in specific
environments where spurious subgraphs fail to satisfy invariance Pe1 (Y |Gs ) � Pe2 (Y |Gs ). This as-
sumption is crucial for the model to effectively differentiate between causal subgraphs and those
influenced by environmental factors. Furthermore, Assumption 3.5 from Reference [6] posits that
H (C |Y ) � H (S |Y ) in all environments, underscoring a consistency requirement in the correlation
strengths between invariant and spurious subgraphs in relation to their labels. In our work, we
align with the assumption similar to that in CIGA [8], which is H (Gc |Y ) < H (Gs |Y ). This implies a
stronger correlation between invariant features and labels as compared to the correlation between
spurious features and labels. Inspired from References [6, 8, 13], we now summarize and refine our
assumptions as follows:

Assumption 1 (Identifiability of Causal Feature). ConsiderEtr as the set of training environ-

ments, and let Gs and Gc represent the shortcut and causal feature variables of graph G, respectively.

For any given shortcut feature Gs , causal feature Gc , and label Y in graph G, they adhere to the fol-

lowing conditions: (1) Variation sufficiency: There exist e1, e2 ∈ Etr for which Pe1 (Y |Gs ) � Pe2 (Y |Gs ),

and for all e1, e2 ∈ Etr , it holds that Pe1 (Y |Gc ) = Pe2 (Y |Gc ). (2) Correlation strength: Across all

environments in Etr , H (Gc |Y ) < H (Gs |Y ).

3.5.2 Structural Causal Model. We delve into the intricacies of various structural causal mod-

els (SCMs) as delineated in related studies, focusing on their distinct characteristics and intercon-
nections. As shown in Figure 3, we showcase the SCMs from DIR [75], CIGA [8], GOOD [22], DisC
[13]. In DIR’s context, S and C symbolize shortcut and causal features, respectively, playing a piv-
otal role in shaping the graph data G. Notably, the label Y is exclusively influenced by the causal
featureC . In contrast, CIGA interprets S andC as latent variables for shortcut and causal features,
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Fig. 3. A comparison of various types of SCMs in related studies.

respectively, withGc andGs depicting their manifestations in the graph space. GOOD discusses a
more specific and complex data generation process and further divides S to S1 and S2. In the DisC
(Figure 3(d)),C and B denote causal and biased features, while E symbolizes graph representation.
The SCM, as illustrated in Figure 3(e), aims to segregateC and B within the dataG, striving to sever
their correlation and leverage C for predictive analysis. Notably, SCMs in Figures 3(a), (b), and (c)
primarily describe data generation, whereas 3(d) encompasses both data generation and model pre-
diction processes, and 3(e) focuses solely on model prediction. Our proposed SCM aligns with this
framework, concentrating on the model’s prediction mechanism. It acknowledges the presence of
both causal and shortcut features within the data, which the model simultaneously assimilates to
derive a representation of the graph data. This representation then forms the basis for the model’s
ultimate prediction. In summary, for graph data generation, our framework resonates with the
SCMs exemplified in 3(a) and (b). Regarding the model prediction process, we align more closely
with the paradigms set forth in 3(d) and (e).

Fig. 4. Illustration of the synthetic dataset SYN-b.

3.5.3 Time Complexity Analysis. We ana-
lyze the time complexity of the proposed
model. First, we define the average numbers
of nodes and edges per graph as |V| and |E |,
respectively. Let B denote the batch size for
each training iteration, lf , la , lд denote the
numbers of layers in the GNN encoder, atten-
tion modules and GNN modules GConvc(·),
GConvt(·), respectively. Let df , da , and dд de-
note the dimensions of the hidden layers in
the GNN encoder, attention modules and GNN
modules, respectively. For the GNN encoder,
the time complexity is O(B×(lf |E |df )). For the
mask generation process, the time complexity
is O(B × (la(|V| + |E |)dд)). For the graph rep-
resentation generation process, the time com-
plexity is O(2B × (lд |E |dд)). For simplicity, we assume l = lf = la = lд and d = df = da = dд .
Hence, the time complexity of a forward propagation is O(Bld(4|E | + |V|)).

4 EXPERIMENTS

To verify the superiority and effectiveness of the proposed CAL+, we conduct experiments to
answer the following research questions:

— RQ1: How effective is the proposed CAL+ framework in alleviating the out-of-distribution

(OOD) issue?
— RQ2: How does CAL+ perform compared to state-of-the-art methods?
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— RQ3: For the different components in CAL+, what are their roles and impacts on
performance?

— RQ4: Does CAL+ capture the causal attended-graphs with significant patterns and insightful
interpretations?

4.1 Experimental Settings

4.1.1 Datasets. We conduct experiments on both synthetic datasets and real-world datasets.
Synthetic datasets: Following Reference [83], we create the synthetic dataset for graph classi-

fication, which contains a total of 8,000 samples with 4 classes and keeps balance (2,000 samples)
for each class. As shown in Figure 4, each sample consists of two parts: causal subgraph and trivial
subgraph. The task is to predict the type of the causal part in the whole graph. For simplicity, we
choose the “House” class to define the bias-level:

b =
#Tree-House

#House
, (18)

where #Tree-House denotes the number of “House” causal subgraphs with the “Tree” trivial sub-
graphs, and #House presents the number of graphs in the “House” class, which is 2,000. We set the
proportion of “Tree” in the other three classes to 1−b. Obviously, for the unbiased dataset, b = 0.5.
We abbreviate the synthetic dataset with bias-level b as SYN-b. We keep the same bias-level on the
training/validation set and keep the testing set unbiased. Additionally, we conduct experiments
on the Motif dataset [22], a synthetic dataset inspired by Spurious-Motif [83]. Like SYN-b, Motif
consists of a causal subgraph (i.e., motif) and a trivial subgraph (i.e., base graph). Each graph is
generated by connecting a base graph (wheel, tree, ladder, star, or path) and a motif (house, cycle,
or crane), with the label determined solely by its motif. In accordance with Reference [22], we use
the base graph and size (i.e., node number) to create the concept shift. Although our work focuses
on graph classification, we also use the idea of ego-graph [74] to extend our method to node clas-
sification task. We use the node classification datasets in Reference [43], including Citeseer and
Amazon-Photo, to conduct experiments.

Real-world datasets: We carry out experiments on three real-world datasets: Molhiv, Molbbbp,
and CMNIST, sourced from Graph OOD datasets [22] and OGB datasets. Following Reference [22],
we select four different types of shortcut features (i.e., color, size, and scaffold) to create the concept
shift. Specifically, Molhiv and Molbbbp are real-world molecular datasets adapted from Molecu-
leNet [76], with nodes representing atoms and edges representing chemical bonds. CMNIST con-
tains graphs transformed from handwritten digits using superpixel techniques [1], and we utilize
color to create the concept shift.

4.1.2 Baselines. To verify the superiority of CAL+, we adopt the following prevalent GNNs and
diverse generalization solutions as baselines:

— Attention-based GNNs: GAT [68], GATv2 [4], SuperGAT [32], GlobalAttention [44],
AGNN [66].

— Pooling-based GNNs: SortPool [89], DiffPool [84], Top-k Pool [18], SAGPool [37].
— Other GNNs: GCN [33], GIN [79].
— General Generalization Algorithms: ERM, IRM [2], GroupDRO [60], VREx [36].
— Graph Generalization Algorithms: DIR[75], OOD-GNN [40], StableGNN [14], CIGA [8],

Disc [13].
— Graph Data Augmentation: DropEdge [58], FLAG [35], M-Mixup [73], G-Mixup [23],

GREA [47].
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Table 1. Test Accuracy (%) of Graph Classification on Synthetic Datasets with Diverse Biases

Method SYN-0.1 SYN-0.3 Unbiased SYN-0.7 SYN-0.9

GATv2 87.25 (↓ 7.37%) 92.19 (↓ 2.12%) 94.19 93.31 (↓ 0.93%) 90.62 (↓ 3.79%)
SuperGAT 83.81 (↓ 12.75%) 91.94 (↓ 4.29%) 96.06 88.50 (↓ 7.89%) 82.81 (↓ 13.79%)
GlobalAtt 87.19 (↓ 10.40%) 93.75 (↓ 3.66%) 97.31 94.62 (↓ 2.76%) 91.50 (↓ 5.97%)
AGNN 84.56 (↓ 11.69%) 93.06 (↓ 2.81%) 95.75 94.81 (↓ 0.98%) 88.12 (↓ 7.97%)

DiffPool 82.28 (↓ 8.69%) 88.02 (↓ 2.32%) 90.11 88.83 (↓ 1.42%) 84.50 (↓ 6.23%)
SortPool 80.70 (↓ 14.24%) 92.33 (↓ 1.88%) 94.10 92.14 (↓ 2.08%) 90.35 (↓ 3.99%)
Top-k Pool 84.31 (↓ 11.81%) 93.53 (↓ 2.17%) 95.60 94.44 (↓ 1.21%) 88.02 (↓ 7.93%)
SAGPool 88.08 (↓ 7.82%) 90.86 (↓ 4.91%) 95.55 92.22 (↓ 3.49%) 83.99 (↓ 12.10%)

GCN 84.94 (↓ 6.60%) 89.38 (↓ 1.72%) 90.94 90.25 (↓ 0.76%) 86.00 (↓ 5.43%)
GCN + CAL 89.38 (↓ 6.03%) 93.50 (↓ 1.70%) 95.12 95.06 (↓ 0.06%) 93.31 (↓ 1.90%)
GCN + CAL+ 90.19 (↓ 5.96%) 95.12 (↓ 0.82%) 95.91 95.88 (↓ 0.03%) 93.06 (↓ 2.97%)

GIN 87.50 (↓ 9.55%) 93.94 (↓ 2.89%) 96.74 94.88 (↓ 1.92%) 89.62 (↓ 7.36%)
GIN + CAL 93.19 (↓ 3.87%) 96.31 (↓ 0.65%) 96.94 96.56 (↓ 0.39%) 95.25 (↓ 1.74%)
GIN + CAL+ 94.31 (↓ 3.17%) 97.12 (↓ 0.28%) 97.40 97.19 (↓ 0.22%) 96.19(↓ 1.24%)

GAT 84.62 (↓ 8.71%) 89.50 (↓ 3.44%) 92.69 92.31 (↓ 0.41%) 87.62 (↓ 5.47%)
GAT + CAL 92.44 (↓ 4.37%) 96.25 (↓ 0.42%) 96.66 96.12 (↓ 0.56%) 92.56 (↓ 4.24%)
GAT + CAL+ 92.56 (↓ 4.33%) 96.42 (↓ 0.34%) 96.75 96.69 (↓ 0.06%) 94.44(↓ 2.39%)

The number in brackets represents the performance degradation compared with the unbiased dataset. Our methods
are highlighted with a gray background.

4.1.3 Hyperparameters. To help readers reproduce our results, we present the detailed settings
of model, training, and hyperparameters for our method and baseline methods.

Our Settings. For dataset SYN-b, we train the models for 100 epochs using a batch size of 128,
employing GNN encoders with three layers and 128 hidden units. For Graph OOD datasets [22]
and OGB datasets [29], we use the GIN architecture as the encoder, select embedding dimensions
from {32, 64, 128, 300}, choose batch sizes from {32, 64, 128, 256}, and set N in the range of [2, 10]
as the batch number for memory bank capacity. Moreover, we search for ρ1, ρ2, and λ within
(0, 1.0) with a step size of 0.1. We apply the default learning rate choices (e.g., 0.001, 0.002) for all
experiments and optimize all models using the Adam optimizer across all datasets. All experiments
are conducted using an NVIDIA 3090 Ti (24 GB GPU).

Baseline Settings. For all GNN models, such as attention-based GNNs, pooling-based GNNs,
GCN, and GIN, we maintain the same settings as the CAL [63] and use the codes provided by these
original papers to conduct experiments. Specifically, we use Adam optimizer and train the GNN
models for 100 epochs with batch size of 128. For SYN-b dataset, we adopt the GNN encoders with
3 layers and 128 hidden units. For ERM, IRM [2], GroupDRO [60], VREx [36], and M-Mixup [73],
we report the results from the GOOD [22] by default and reproduce the missing results on Molbbbp
dataset. For DIR [75], CAL [63], DropEdge [58], GREA [47], FLAG [35], G-Mixup [23], CIGA [8],
and DisC [13], they provide source codes for the implementations. We adopt their source codes to
conduct experiments. For OOD-GNN [40] and StableGNN [14], their source codes are not publicly
available. We reproduce them based on the codes of StableNet [91]. For all baseline methods, we
use the same hyperparameter search range as ours.

4.2 Performance on Synthetic Graphs (RQ1)

To explore whether our proposed framework can alleviate the OOD issue, we first conduct ex-
periments on SYN-b with different biases: b ∈ {0.1, 0.2, . . . , 0.9}. The experimental results are
summarized in Table 1 and Figure 5. We have the following Observations:
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Fig. 5. The performance discount on synthetic datasets with different bias-levels.

Obs 1: Refining discriminative features without considering the causality leads to poor

OOD generalization. For the unbiased dataset, most attention- and pooling-based baselines, such
as GlobalAtt, SuperGAT, SortPool, Top-k Pool, outperform GCN. It indicates the effectiveness of
extracting discriminative features in the ID setting. However, as the bias-level goes to extremes,
the performance dramatically deteriorates. For instance, the performance drop of attention-based
methods ranges from 7.37% ∼ 12.75% on SYN-0.1, and 3.79% ∼ 13.79% on SYN-0.9; Pooling-based
methods drop from 7.82% ∼ 14.24% and 3.99% ∼ 12.10% for SYN-0.1 and SYN-0.9. These indicate
that simply extracting discriminative features by attention or pooling module is prone to capture
the data biases. These are also beneficial for reducing the training loss but lead to poor OOD
generalization. Taking SYN-0.9 as an example, most “House” co-occur with “Tree” in the training
data, so the model will mistakenly learn shortcut features from the “Tree”-type trivial subgraphs
to make predictions, instead of probing the “House”-type causal subgraphs. This will mislead the
model to adopt the “Tree” pattern to make decisions in the inference stage.

Obs 2: GNNs with better ID performance tend to have worse OOD generalization. For
the unbiased dataset, GIN achieves the best performance (96.74%), while GAT (92.69%) outperforms
the GCN (90.94%). This indicates that the in-distribution (ID) performance of these models ex-
hibits such an order: GIN > GAT > GCN. However, when the bias is changed to 0.1 and 0.9, the
performance of GIN drops by 9.55% and 7.36%, GAT drops by 8.71% and 5.47%, and GCN drops
by 6.60% and 5.43%, respectively. It shows that the rankings of models’ robustness against OOD
issues are in the opposite order: GCN > GAT > GIN. This indicates that GNNs with better ID
performance are prone to learn more shortcut features. Similar trends also occur in other base-
lines. After adopting CAL or CAL+, this phenomenon is significantly alleviated, which verifies the
effectiveness of CAL and CAL+ in overcoming the OOD issue.

Obs 3: Mitigating the confounding effect can achieve more stable performance on OOD

issues. We first define the performance discount on SYN-b as the accuracy on SYN-b normalized
by the accuracy on unbiased SYN-0.5. It indicates the degree of the performance degradation on
biased synthetic datasets without considering the model’s ID generalization. We plot the perfor-
mance discount curves on SYN-b with b ∈ {0.1, 0.2, . . . , 0.9}. As depicted in Figure 5, we observe
that pooling-based methods outperform GIN in a small range of bias-levels (0.2 ∼ 0.8), while
the performance drops sharply when b = 0.1 or 0.9. For example, the performance discount of
Top-k Pool drops from 0.95 to 0.88 as b reduces from 0.2 to 0.1. Attention-based methods perform
worse than GIN when b < 0.5. For b > 0.5, AGNN achieves better performance than GIN, while
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Table 2. Classification Performance of Different Methods on Synthetic and Real-world Datasets

Method
Motif Molhiv Molbbbp CMNIST

size base size scaffold size scaffold color
ERM 70.75±0.56 81.44±0.45 63.26±2.47 72.33±1.04 78.29±3.76 68.10±1.68 42.87±0.72

IRM 69.77±0.88 80.71±0.46 59.90±3.15 72.59±0.45 77.56±2.48 67.22±1.15 42.80±0.38

GroupDRO 69.98±0.86 81.43±0.70 61.37±2.79 73.64±0.86 79.27±2.43 66.47±2.39 43.32±0.75

VREx 70.24±0.72 81.56±0.35 60.23±1.70 72.60±0.82 78.76±2.37 68.74±1.03 43.31±0.78

DropEdge 55.27±5.93 70.84±6.81 54.92±1.73 66.78±2.68 78.32±3.44 66.49±1.55 38.43±1.94

FLAG 56.26±3.98 72.29±1.31 66.44±2.32 70.45±1.55 79.26±2.26 67.69±2.36 43.41±1.94

M-Mixup 67.81±1.13 77.63±0.57 64.87±1.77 72.03±0.53 78.92±2.43 68.75±1.03 40.96±0.81

G-Mixup 59.92±2.10 74.66±1.89 70.53±2.02 71.69±1.74 78.55±4.16 67.44±1.62 38.23±0.76

GREA 73.31±1.85 80.60±2.49 66.48±4.13 70.96±3.16 77.34±3.52 69.72±1.66 40.32±0.71

OOD-GNN 68.62±2.98 74.62±2.66 57.49±1.08 70.45±2.02 79.48±4.19 66.72±1.23 39.03±0.72

StableGNN 59.83±3.40 73.04±2.78 58.33±4.69 68.23±2.44 77.47±4.69 66.74±1.30 40.32±0.71

DIR 54.96±9.32 82.96±4.47 74.39±1.45 71.40±1.48 76.40±4.43 66.86±2.25 28.71±4.66

CIGA 70.65±4.81 77.48±2.54 73.62±1.33 71.65±1.33 76.08±1.21 66.43±1.99 39.39±3.30

DisC 53.34±13.71 76.70±0.47 56.59±10.09 67.12±2.11 75.68±3.16 60.72±0.89 34.18±1.88

CAL 66.64±2.74 68.54±2.14 62.36±1.42 72.61±1.84 79.50±4.81 68.06±2.60 42.48±0.48

CAL+ (ours) 86.24±1.69 85.35±2.10 83.33±2.84 73.05±1.86 81.57 ±1.97 70.17±1.65 46.55±0.40

Improvement ↑ 12.93% ↑ 1.64% ↑ 10.72% ↓ 0.59% ↑ 2.07% ↑ 0.45% ↑ 3.14%
The bold numbers indicate the best performance, while the underlined numbers indicate the second-best performance.

GlobalAttention often performs worse. These results reflect that attention- or pooling-based meth-
ods all have their own weaknesses, such that they cannot consistently overcome the diverse distri-
bution shifts. Equipped with CAL and CAL+, GIN consistently outperforms all the baselines on all
ranges of bias-levels and obviously keeps a large gap, which further demonstrates the significance
of mitigating the confounding effect. Furthermore, the performance of CAL+ is better than that of
CAL, indicating that incorporating the memory bank and prototype strategy can further enhance
the effectiveness of backdoor adjustment.

4.3 Comparison with Existing Studies (RQ2)

In this section, we compare our method with more baseline methods, including general generaliza-
tion algorithms, graph generalization algorithms, and graph augmentation methods. We conduct
experiments on four graph classification datasets [22], including Motif, Molhiv, Molbbbp, and CM-
NIST, and two node classification datasets, including Citeseer and Amazon-Photo. For metrics, we
use classification accuracy on the Motif, CMNIST, Citeseer, Amazon-Photo, and ROC-AUC on Mol-
hiv and Molbbbp. We conduct 10 random runs and report the mean and standard deviation. The
experimental results are shown in Tables 2 and 3. We make the following Observations:

Obs 4: Existing efforts still exist limitations to address OOD issues. First, the direct ap-
plication of general generalization algorithms to the graph domain does not yield significant im-
provements in performance. The average performance of these methods ranges from 67.22 to 67.94,
which is merely on par with the ERM (i.e., 68.14). Second, current graph generalization algorithms
do not consistently surpass ERM in performance. In particular, OOD-GNN and StableGNN fail to
outperform ERM in the majority of cases. In contrast, invariant learning approaches such as DIR,
CAL, and DisC exhibit superior performance to ERM in certain instances. For instance, DIR demon-
strates a 9.35% improvement over ERM on Molhiv (size), while GSAT exhibits a 2.27% relative
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Table 3. Performance of CAL+ in Node Classification Tasks

Method
Citeseer Amazon-Photo

r = 1/3 r = 0.5 r = 0.7 r = 1/3 r = 0.5 r = 0.7
ERM 47.09±3.44 45.36±5.54 40.09±2.12 48.26±2.26 47.91±3.24 39.23±5.27

IRM 48.84±2.75 45.39±2.07 42.89±2.38 53.75±1.31 50.98±3.09 42.23±2.75

GroupDRO 49.32±6.47 46.30±5.44 40.68±2.83 49.62±6.45 47.65±8.34 41.15±5.50

VREx 47.53±3.65 43.11±4.06 43.03±4.29 47.13±8.01 48.53±8.37 37.49±5.39

CAL 56.37±2.48 47.59±2.14 46.89±2.32 53.68±1.70 51.25±2.83 42.38±3.44

CAL+ (ours) 59.43±1.46 55.31±1.86 49.35±2.46 54.12±1.66 52.97±2.25 45.42±2.11

improvement on Motif (base). Nevertheless, these methods also underperform in some scenarios.
Specifically, DIR experiences a 14.47% decrease in performance compared to ERM in Motif (size),
and GSAT records a 2.66% drop in Molbbbp (size). Third, data augmentation techniques display
improved performance in specific settings. For example, GREA demonstrates 2.38% and 3.62% rel-
ative improvements over ERM on Molbbbp (scaffold) and Motif (size), respectively. G-mixup also
achieves a 1.25% enhancement on the CMNIST dataset. However, in terms of average performance,
these methods only maintain a comparable performance level (i.e., 61.58∼68.39) to ERM (i.e., 68.14).
These findings suggest that existing generalization approaches continue to exhibit limitations in
addressing out-of-distribution (OOD) issues.

Obs 5: Compared with the existing baselines, our method can effectively improve the

generalization. Our proposed method, CAL+, exhibits substantial performance improvements
and surpasses the majority of benchmark algorithms. Specifically, for Motif dataset, CAL+ registers
accuracy improvements of 15.49% and 3.91% compared to ERM across two domains. In comparison
to the optimal baseline algorithms, GREA and GSAT, CAL+ achieves improvements of 12.93% and
1.64%, respectively. For the CMNIST dataset, CAL+ records improvements of 3.68% and 3.14% in
relation to ERM and the leading baseline, FLAG, respectively. For Molhiv and Molbbbp datasets,
CAL+ consistently exhibits superior performance in the majority of instances. It surpasses ERM
by an average of 11.68% and 1.40% across two distinct domains (i.e., size and scaffold). In terms of
average performance, CAL+ registers improvements ranging from 6.78% to 14.56% in comparison
to invariant learning-based approaches, such as DIR, CAL, GREA, and DisC. These findings under-
score the effectiveness of the proposed CAL+ framework. Although our method is specifically de-
signed to solve the graph classification problem, we follow the idea of ego-graph [74] to extend our
method to the node classification task. The experimental results in Table 3 show that our method
can defeat existing generalization methods and achieve significant performance improvements.

4.4 Further Analysis (RQ3)

In this section, we first explore the impact of different components on the final performance. We
then explore the sensitivity of model performance to hyperparameters. Finally, we count the run-
ning time of the proposed method.

4.4.1 Ablation Study. We examine the impact of different components in CAL+ on the final
performance, including node/edge attention mechanism, random combination, memory bank, and
prototype strategies.

Node Attention & Edge Attention. Node Attention (NA) and Edge Attention (EA) refine
the features from two different views: node-level and edge-level. Here, we want to examine the
effect of adopting NA or EA alone. We adopt GCN as the encoder to conduct experiments on four
biased synthetic datasets and two real-world datasets. GCN+CAL+ w/o NA or EA represents the
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Fig. 6. The comparison of different components in CAL+.

node/edge attention scores in Equation (7)/(8) are evenly set as 0.5. The experimental results are
shown in Figure 6. We can find that: (1) Comparing NA with EA, the performance of CAL+ without
NA is significantly worse than that without EA, which indicates that the node feature contains
more significant information compared with graph structure. (2) Just adopting NA or EA alone still
achieves better performance than baselines, which demonstrates that only applying NA or EA can
also disentangle the causal/trivial attended-graph and achieve causal intervention to some extent.

Random Combination. We need to stratify the confounder distribution for causal intervention.
With the random combination, each causal feature will combine with different types of trivial
patterns. To verify its importance, we change the “Random Combination” module in Figure 2 to
“Combination,” which just adopts the addition operation orderly in original graph, and we rename
it as “GCN+CAL+ w/o RD.” The experimental results are shown in Figure 6. We can find that: (1)
The performance drops severely compared with GCN+CAL+, which demonstrates the importance
of the causal intervention. (2) GCN+CAL+ w/o RD can also outperform the GCN baselines. We
conjecture that just implementing disentanglement makes GNN pay more attention to the causal
features, which will slightly ignore the data biases or trivial patterns. These results also reflect that
disentanglement and causal intervention will help each other to improve their own effectiveness.

Memory Bank & Prototype. On the one hand, to mitigate the confounding effect on gener-
alization, we leverage backdoor adjustments by combining each causal feature with the stratifi-
cation of confounding factors. However, the mini-batch combination adopted by CAL limits the
variety of shortcut features for each combination, reducing the effectiveness of backdoor adjust-
ment. Therefore, we propose the memory bank to address this issue. On the other hand, CAL does
not consider the consistency of intra-class causal estimation, which may lead to inaccurate and
unstable causal feature estimations. Consequently, we adopt class-wise prototypes to enhance the
stability of causal feature estimation. We independently verify the impact of these two modules on
the final performance, and the experimental results are shown in Table 4. “w/ Mem” and “w/ Pro”
represent the application of memory bank and prototype modules to the original CAL model, re-
spectively. From the results, we make the following observations: (1) The performance of CAL with
memory bank consistently outperforms CAL across all datasets. Specifically, it achieves 18.38%
and 20.68% improvements over CAL on Motif (size) and Molhiv (size). Furthermore, its average
performance exceeds CAL by 8.51% across four datasets. (2) For “CAL w/ Pro,” a similar perfor-
mance improvement trend is observed. For instance, on the Molhiv (size) and CMNIST datasets, it
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Table 4. The Impact of Different Components in CAL+

Method
Motif Molhiv Molbbbp CMNIST

size scaffold size base size scaffold color
CAL 66.64±2.74 68.54±2.14 62.36±1.42 72.61±1.84 79.50±4.81 68.06±2.60 42.48±0.48

CAL w/ Mem 85.02±1.18 81.65±13.11 83.04±2.17 72.72±2.35 81.19±2.52 69.73±1.56 46.42±0.71

CAL w/ Pro 83.54±2.16 84.08±1.72 85.17±2.11 72.62±1.95 81.13±1.67 70.11±2.02 46.16±0.31

CAL+ (ours) 86.24±1.69 85.35±2.10 83.33±2.84 73.05±1.86 81.57±2.07 70.17±1.65 46.55±0.40

The bold numbers indicate the best performance.

Fig. 7. Performance of CAL+ method with memory banks of different capacities.

enhances performance by 22.81% and 3.68% compared to CAL, respectively. This demonstrates that
prototypes can enable CAL to capture more stable causal features and achieve generalization im-
provement. (3) Finally, CAL+ can further improve performance. In terms of average performance,
CAL+ improves by 9.41% compared to CAL and by 0.90% and 0.47% compared to CAL w/ Mem and
CAL w/ Pro, respectively. These results indicate that a more stable estimation of causal features
and higher-quality backdoor adjustment strategies can complement each other, further eliminate
confounding effects, and thereby enhance the OOD generalization.

4.4.2 Hyperparameter Sensitivity Analysis. In our CAL+ model, two critical hyperparameters
are pivotal: the memory bank capacity N and the causal intervention coefficient λ. The capacity N
in the memory bank denotes the count of shortcut feature representations employed by the model
for backdoor adjustment. An increase in N allows for a broader array of representations, thereby
enriching the diversity of shortcut features used for causal intervention. The coefficient λ, how-
ever, quantifies the intensity of causal intervention by the model. To assess the influence of these
hyperparameters on CAL+’s performance, we conduct a comprehensive series of experiments. The
values for N are varied across the set {1, 2, 4, 6, 8, 10}, while λ is tested over the range [0.2, 2.0],
incrementing in steps of 0.2. The outcomes of these experiments are presented in Figures 7 and
8. From the results, it is evident that increasing N enhances performance up to a certain point;
specifically, beyond N = 6 the performance plateaued. Regarding the coefficient λ, an incremen-
tal improvement in performance is observed between 0.2 and 0.6, stabilizing thereafter up to 2.0.
These findings underscore the significance of both the memory bank capacity and causal inter-
vention in enhancing model performance. Moreover, they indicate that within an optimal range,
CAL+’s performance exhibits a degree of insensitivity to variations in these hyperparameters.

4.4.3 Running Time and Model Size. Contrasting with the traditional GNN encoder, our en-
hanced CAL+ model integrates node and edge attention mechanisms, along with dual GNN layer
modules. This integration introduces additional parameters, contributing to increased time and
space complexity due to the inclusion of a memory bank and prototype. However, these increases
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Fig. 8. Hyperparameter sensitivity analysis on the coefficient of λ.

Table 5. Running Time, Model Size, and Performance Improvement

Dataset
ERM CAL CAL+

Running
Time

Model
Size

Running
Time

Model
Size

Performance
Improvement

Model
Size

Model
Size

Performance
Improvement

Motif 00h 51m 19s 1.515M 01h 37m 15s 2.213M ↓ 11.18% 01h 44m 46s 2.261M ↑ 12.73%
Molhiv 00h 27m 19s 1.515M 00h 46m 14s 2.213M ↓ 0.46% 00h 50m 37s 2.261M ↑ 15.34%
Molbbbp 00h 11m 58s 1.515M 00h 18m 22s 2.213M ↑ 0.81% 00h 24m 20s 2.261M ↑ 3.66%
CMNIST 01h 56m 32s 1.517M 02h 28m 49s 2.244M ↓ 0.91% 02h 41m 12s 2.397M ↑ 8.58%

remain within acceptable limits. Comprehensive comparisons regarding running time, model size,
and performance improvements between CAL+, CAL, and the original model are conducted across
various datasets, with the results detailed in Table 5. These experiments reveal that the running
time of CAL+ is approximately 1.5 to 2 times longer than that of the base model, and the model
size is about 1.5 times larger. Notably, CAL+ demonstrates comparable running time and model
size to CAL. This comparison underscores a more favorable performance-complexity balance in
CAL+, especially considering its significant performance enhancements. Therefore, we contend
that the tradeoffs in complexity are justified and manageable for practical applications.

4.5 Visualization and Analysis (RQ4)

In this section, we plot node and edge attention areas of the causal attended-graphs based on the
attention scores in CAL+. We adopt a GCN-based encoder and apply CAL and CAL+ on SYN-b.
The visualizations are shown in Figure 9. Nodes with darker colors and edges with wider lines
indicate higher attention scores. The results obtained by CAL and CAL+ demonstrate that most of
the darker nodes and wider edges are distributed within the causal subgraphs in the graph data.
This indicates that both methods can effectively make predictions based on causal features in the
data to some degree. Furthermore, compared to CAL, CAL+ focuses less on trivial subgraphs. This
outcome reveals that our proposed memory bank and prototype strategies can further refine the
model’s focus on causal features while minimizing the influence of shortcut features.

5 RELATED WORK

In this section, we briefly review some related studies, including attention mechanism, out-of-
distribution generalization, and causal inference.

5.1 Attention Mechanism

Attention Mechanism selects the informative features from data, which has obtained great success
in computer vision [11, 28, 61, 69, 81] and natural language processing tasks [10, 67]. In recent years,
attention mechanism has gradually become prevalent in the GNN field. The attention modules for
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Fig. 9. Visualizations of causal attended-graphs. (Left): Attention scores of CAL, (Right): Attention scores of

CAL+.

GNNs can be defined over edges [4, 32, 39, 66, 68] or over nodes [37, 38, 44]. However, most
attention-based approaches still focus on how to better fit statistical correlations between data
and labels. Hence, the learned attentions are inherently biased in OOD settings. Recent studies
[69, 81] propose the causal attention modules to alleviate the bias. CaaM [69] adopts the adversarial
training to generate the data partition in each iteration to achieve the causal intervention. CATT
[81] proposes in-sample and cross-sample attentions based on front-door adjustment. However,
they are both tailored for computer vision tasks, while they cannot transfer to graph learning
tasks, due to the irregular and challenging graph-structure data. Distinct from them, we utilize the
disentanglement and causal intervention strategies to strengthen the attention modules for GNNs.

5.2 Out-of-distribution Generalization

OOD generalization [2, 25, 59, 60] has been extensively explored in recent years. IRM [2] minimizes
the empirical risk under different environments. Group-DRO [56, 57, 60] adversarially explores
the group with the worst risk and achieves generalization by minimizing the empirical risk of the
worst group. Recent studies [22, 41] have demonstrated that OOD problem is also prevalent in
graph domain, including graph classification [3, 5, 72, 75, 82] and node classification tasks [74, 92].
Consequently, research focusing on graph generalization has been gaining traction, encompassing
areas such as data augmentation [23, 31, 73, 85], stable learning [14, 40], and invariant learning
[8, 13, 42, 49, 64, 80]. Among them, invariant learning has progressively evolved into a dominant
paradigm for addressing OOD issue in graph-related tasks. It typically operates on the premise of
graph data generation, which asserts that causal features exist within the data, that these features
exhibit a causal relationship with the label, and that this relationship remains consistent across
diverse environments. To capture these causal features, DIR intervenes in environmental features,
promoting model predictions that maintain invariance. GREA [47], CAL [63], and DisC [13] also
employ similar ideas, advocating for models that generate predictions based on causal features.

5.3 Causal Inference in Machine Learning

Causal Inference [53, 54] endows the model with the ability to pursue real causality. Thus,
the model can avoid the interference from confounding factors. A growing number of studies
[30, 51, 65, 88] have shown that causal inference is beneficial to diverse computer vision tasks.
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CONTA [88] uses backdoor adjustment to eliminate the confounder in weakly supervised seman-
tic segmentation tasks. DDE [30] proposes to distill the colliding effect between the old and the
new data to improve class-incremental learning. Unlike computer vision, the application of causal
intervention in the GNN community is still in its infancy. CGI [17] explores how to select trust-
worthy neighbors for GNN in the inference stage and shows its effectiveness in node classification.
Reference [87] studies the connection between GNNs and SCM from a theoretical perspective. Dif-
ferent from them, we introduce a causal attention learning strategy to mitigate the confounding
effect for GNNs. It encourages GNNs to pay more attention to causal features, which will enhance
the robustness against the distribution shift.

6 CONCLUSION

In this work, we revisit the GNN modeling for graph classification from a causal view. We find that
current GNN learning strategies are prone to exploit the shortcut features to support their predic-
tions. However, the shortcut feature actually plays a confounder role. It establishes a backdoor
path between the causal feature and the prediction, which misleads the GNNs to learn spurious
correlations. To mitigate the confounding effect, we propose the CAL+, which is guided by the
backdoor adjustment from the causal theory. It encourages the GNNs to exploit causal features
while ignoring the shortcut parts. Extensive experimental results and analyses verify its effective-
ness. In future work, We will also make efforts to apply CAL+ to other graph learning tasks, such
as node classification or link prediction.
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