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ABSTRACT
Sequential recommendation aims to predict users’ next interaction
with items based on their past engagement sequence. Recently,
the advent of Large Language Models (LLMs) has sparked inter-
est in leveraging them for sequential recommendation, viewing
it as language modeling. Previous studies represent items within
LLMs’ input prompts as either ID indices or textual metadata. How-
ever, these approaches often fail to either encapsulate comprehen-
sive world knowledge or exhibit sufficient behavioral understand-
ing. To combine the complementary strengths of conventional rec-
ommenders in capturing behavioral patterns of users and LLMs
in encoding world knowledge about items, we introduce Large
Language-Recommendation Assistant (LLaRA). Specifically, it
uses a novel hybrid prompting method that integrates ID-based
item embeddings learned by traditional recommendation models
with textual item features. Treating the “sequential behaviors of
users” as a distinct modality beyond texts, we employ a projector
to align the traditional recommender’s ID embeddings with the
LLM’s input space. Moreover, rather than directly exposing the
hybrid prompt to LLMs, a curriculum learning strategy is adopted
to gradually ramp up training complexity. Initially, we warm up
the LLM using text-only prompts, which better suit its inherent
language modeling ability. Subsequently, we progressively tran-
sition to the hybrid prompts, training the model to seamlessly
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incorporate the behavioral knowledge from the traditional sequen-
tial recommender into the LLM. Empirical results validate the ef-
fectiveness of our proposed framework. Codes are available at
https://github.com/ljy0ustc/LLaRA.
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1 INTRODUCTION
Sequential recommendation [12, 48] is to predict users’ next items
of interest based on their historical interactions with items. Conven-
tional sequential recommenders [16, 25, 44] typically involve two
steps: (1) assigning each item with a distinct ID, which is converted
into a trainable embedding; (2) learning these embeddings with the
objective of next item prediction, so as to capture user preference.
After training on historical interaction data, item representations
can encapsulate the sequential behavioral patterns of users.

Recently, inspired by the great success of Large LanguageModels
(LLMs) [4, 6, 45], exploring the potential of LLMs in sequential
recommendation is attracting attention [2, 8, 9, 13, 20, 28, 32, 55,
58], especially driven by extensive world knowledge and innate
reasoning capabilities of LLMs. At the core is to reshape sequential
recommendation as the language modeling task — that is, convert
the behavioral sequence into the textual input prompt, e.g., “This
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Figure 1: Comparison among three prior item representation methods and ours. (a) ID Number: represents an item with a
numerical index. (b) Randomly-initialized ID Token: represents an item with an OOV-independent token. (c) Text Metadata:
represents an item with its textual features, such as item title. (d) Hybrid Item Representation: integrates both textual tokens
and behavioral tokens derived from the ID-based item embedding learned by traditional recommender models.

user has watched [item1], [item2], . . . , [item𝑛]. Predict the next
movie this user will watch.”. When considering the way to represent
the item within the prompt (e.g., [item𝑘 ]), prior studies generally
follow two approaches:

• ID-based Representation: Within the prompt, each item is repre-
sented as an ID number [13] (e.g., “14” for the movie “Titanic”)
or a randomly-initialized ID token [22], as Figures 1a and 1b il-
lustrate, respectively. Despite its simplicity, this approach leaves
the textual characteristics of items (e.g., titles and descriptions)
untouched, consequently underutilizing the world knowledge
inherent in LLMs. Moreover, the employment of ID numbers or
ID tokens might pose integration challenges with LLMs, as it
does not correspond well with the natural language processing
capabilities of LLMs.

• Text-based Representation: This approach encodes each item in
the prompt through its textual metadata, such as titles [2, 8] and
descriptions [18, 28]. Taking Figure 1c as an example, the movie
can be directly represented by its title “Titanic”. While effectively
harnessing LLMs’ linguistic capabilities and world knowledge
about items, it falls short of exhibiting the sequential behavior
patterns of users. Overlooking such patterns could confine LLM
in a suboptimal position when predicting the next item.

Consequently, we argue thatmerely prompting LLMswith either ID-
based or text-based representations of item sequences fails to fully
tap into LLMs’ potential for sequential recommendation. Instead,
the LLMs should gain a deeper understanding of the behavioral
patterns inherent in the sequential interactions.

In pursuit of this goal, we explore the alignment between LLMs
and the sequential recommenders, going beyond relying on mere
ID-based or text-based prompting. Drawing inspiration from Multi-
modal Large Language Models (MLLMs) [1, 11, 23, 59] that adeptly
understand and reason across diverse modalities (e.g., images, audio,
and 3D point clouds), we propose viewing the “sequential behaviors
of users” as a new modality for LLMs in recommendation and align-
ing it with the language space. Such an alignment could empower
LLMs to understand and internalize the behavioral patterns that
recommenders have effectively identified and utilized.

To this end, we propose a novel framework as illustrated in Figure
2a, named Large Language-Recommendation Assistant (LLaRA),
which integrates conventional sequential recommenders into LLMs
with two tailor-made enhancements:

(1) Hybrid Prompt Design:We exploit two distinct approaches,
text-only and hybrid prompting, to convert an interaction sequence
into an input prompt for LLMs. Specifically, the text-only method
represents each item using its textual metadata, which are then
transformed into textual tokens. Beyond text-only prompting, we
further devise hybrid prompting, which integrates behavioral pat-
terns sourced from recommenders. That is, for an item’s ID repre-
sentation from a traditional recommender (e.g., SASRec [25]), we
feed it into a projector (e.g., a trainable MLP) to yield a behavioral
token that is compatible with the LLMs’ textual token space. We
then combine the textual and behavioral tokens, creating a multi-
faceted representation of each item within the prompt. Considering
the movie example in Figure 1d, [item1] is depicted as the con-
catenation of textual token
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. Such an integration offers a more holistic depiction of
user behaviors, surpassing prompts solely based on the ID or text.

(2) CurriculumPromptTuning:Building upon the dual prompt-
ing approaches, we draw inspiration from curriculum learning
[3, 49] and propose a curriculum prompt tuning strategy — gradu-
ally shifting the learning focus from text-only prompting to hybrid
prompting. Specifically, our strategy begins with text-only prompt-
ing, serving as an initial warm-up phase for the LLM. This phase is
designed to align with the natural language modeling capabilities
of the LLM, as it involves characterizing items through their textual
metadata. The tuning in this phase ensures that the LLM becomes
acquainted with the basic idea of the recommendation mechanism.
Following this, we transition to hybrid prompting, which trains the
projector to inject behavioral knowledge from recommenders into
the LLM effectively.

Overall, we not only familiarize the LLM with the recommen-
dation mechanism utilizing text-only prompts, but also internalize
the behavioral knowledge encoded by recommenders with hybrid
prompts. The progressive tuning strategy ensures an evolving learn-
ing experience for the LLM, enhancing its capabilities of sequential
recommendation with a deeper understanding of user behavior.

We conduct experiments on three datasets, MovieLens [14],
Steam [25], and LastFM [5], to compare LLaRA with various lead-
ing sequential recommender models and several LLM-based meth-
ods. The results show that LLaRA consistently outperforms these
baselines in terms of the HitRatio@1 metric, demonstrating its
superiority. Furthermore, we perform ablation studies to justify
the importance of the two key components: hybrid prompting and
curriculum prompt tuning.

In summary, our contributions can be concluded as follows: We
propose a novel framework, LLaRA, to enhance LLMs with sequen-
tial recommenders. In LLaRA, we introduce a hybrid prompting
method that integrates both world knowledge and behavioral pat-
terns into item representations; and we conduct curriculum prompt
tuning to achieve modality alignment. Comprehensive experimen-
tal results underscore the effectiveness of the LLaRA framework.

2 RELATEDWORK
In this section, we provide a literature review pertaining to Large
Language Models, Multi-modal Large Language Models, and LLMs
for Sequential Recommendation. Our work draws inspiration from
them for fusing LLMs and sequential recommendation systems.

2.1 Large Language Models
Language modeling has been extensively scrutinized for language
understanding and generation over the past years, thereby catalyz-
ing the recent emergence of LanguageModels (LMs) [4, 6, 10, 40, 45].
Pretrained LMs built on the Transformer architecture, such as BERT
[10] and T5[40], have demonstrated profound versatility owing to
their large-scale training corpus. More recently, researchers have
delved deeper into the scaling effect by augmenting the parameter
and training corpus scale to an unprecedented magnitude — en-
compassing billions of parameters and trillions of training tokens.
These Large Language Models (LLMs), like GPT-4 [36] and Llama
[45], manifest substantial performance enhancements and show
emergent abilities, such as commonsense reasoning and instruction

following. Moreover, domain-specific LLMs, such as those in the
domain of finance [51], medicine [41], and law [7], are constructed
by integrating domain expertise with the commonsense knowledge
inherent in general LLMs. These advancements inspire us to probe
the potential of LLMs in the domain of recommendation.

2.2 Multi-Modal Large Language Models
Despite their versatility and promising performance, most LLMs
are restricted to textual inputs. However, a vast reservoir of infor-
mation and knowledge resides in other modalities, including vision,
video, and audio. Consequently, researchers have proposed Multi-
modal Large Language Models (MLLMs), to integrate the text with
other modalities [30, 39]. Recent MLLMs suggest that visual space
can be harmoniously aligned with textual space [11, 27, 47, 59],
thereby empowering them to perform language generation tasks
conditioned on visual inputs. Beyond vision, other modalities like
video [56], audio [35], graph [34], and 3D point clouds [17, 29] are
incorporated into LLMs, enabling them to digest information and
knowledge of other modalities. We draw inspiration from these
prior studies to devise LLaRA, which fuses multi-modal information
to enhance sequential recommendation.

2.3 LLMs for Sequential Recommendation
Sequential recommendation aims to predict the next item that
matches user preference, based on his/her historical interaction
sequence [12, 48]. Prior studies have explored employing complex
model architectures to better characterize user preference, including
Recurrent Neural Networks (RNNs) [16, 38, 43], Convolutional Neu-
ral Networks (CNNs) [44, 53], and Attention mechanisms [25, 42].
With the advent of LLMs, researchers pay increasing attention
to exploring their potential for sequential recommendation. Not
only the extensive world knowledge stored in LLMs could serve
as a rich source of background information for items [36], but also
the reasoning capabilities of LLMs are able to augment the next
item prediction [46]. When integrating LLMs into recommendation
(LLM4Rec), there are two prevalent categories [31, 50]:
• LLM as the Recommender. It involves training from scratch
[28], tuning [2, 8, 13], prompting [9], and in-context learning [20,
32] an LLM on recommendation data to serve as a recommender.
Although studies within this category have substantiated that
LLMs can be imbued with recommendation capabilities, they
neglect established yet effective recommendation models.

• LLM as the Enhancer. It augments traditional recommenders
with LLM tokens or embeddings [18, 19, 54]. It typically uti-
lizes LLMs as feature extractors or text generators, given their
exceptional ability to integrate diverse sources and forms of in-
formation, such as item metadata. Nonetheless, the actual recom-
mendation process is still done by conventional models, leaving
the LLMs’ reasoning skills untouched.
Different from the aforementioned studies, LLaRA investigates

aligning traditional sequential recommendation models with LLMs.
It not only capitalizes on the sequential behavioral patterns learned
by the well-established recommender models, but also utilizes the
reasoning ability and world knowledge embedded within LLMs.
In contrast to its concurrent work [57], LLaRA introduces the cur-
riculum tuning strategy to achieve this alignment, ensuring a more
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(a) Curriculum Prompt Tuning for Hybrid Item Representation.
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Figure 2: The LLaRA framework. (a) Sequential recommendation data is transformed into the instruction-tuning format. The
item representation example illustrates the transition from pure textual tokens to the integration of the textual tokens with
the behavioral token. (b) The sequential recommender is well-trained and frozen, while the trainable projector bridges the
sequential recommender and LLM space.

stable learning procedure, and concentrates on list-wise ranking
instead of the point-wise binary (yes/no) classification task.

3 PRELIMINARY
Task Formulation. Given a user who has chronologically engaged
with item sequence [𝑖1, 𝑖2, . . . , 𝑖𝑛], a sequential recommender entails
predicting the next item 𝑖𝑛+1 this user will interact with.

Curriculum Learning. Inspired by the pedagogical strategies in
human education, curriculum learning [3] emphasizes training the
model from simpler to more complex learning tasks. In general, it
involves three critical stages [49]:

(1) Complexity Assessment: This initial stage quantifies the com-
plexity of each data point or task, which is then used to assign a
learning priority.

(2) Scheduler Formulation: Based on the complexity, a training
scheduler is developed to arrange the sequence and frequency of
tasks presented to the model, typically commencing with easier
tasks and gradually advancing to harder ones.

(3) Training Execution: The curriculum learning process is im-
plemented adhering to the predetermined progression.

Instruction Tuning. Instruction tuning emerges as a pivotal ap-
proach that can substantially boost LLMs to follow human task-
specific instructions [37]. Specifically, it first reorganizes data into
Z = {(𝑥𝑖 , 𝑦𝑖 )}𝑖=1,..,𝑁 , where 𝑥𝑖 and 𝑦𝑖 denote the textual instruc-
tions and the corresponding responses respectively. This pairing
format not only encapsulates the task descriptions but also con-
verts training data into a natural language format, thus creating a
comprehensive instructional context. Subsequently, we can tune
the LLMs with Z following the autoregressive objective [4, 45? ]:

max
Φ

∑︁
(𝑥,𝑦) ∈Z

|𝑦 |∑︁
𝑡=1

log(𝑃Φ (𝑦𝑡 |𝑥,𝑦<𝑡 )), (1)

where Φ is the parameters of the LLMs, with 𝑦𝑡 referring to the 𝑡-th
token of 𝑦, and 𝑦<𝑡 indicating the tokens preceding 𝑦𝑡 .

Parameter Efficient Fine-Tuning. Fine-tuning all parameters
of LLMs is time-consuming and resource-intensive. To alleviate
this challenge, Parameter-Efficient Fine-Tuning (PEFT) [15, 26, 33]
optimizes a smaller set of parameters, significantly reducing com-
putational requirements while still achieving commendable per-
formance. LoRA [21] is a typical PEFT algorithm, which keeps the
LLM weights frozen and decomposes the updating weights into
trainable low-rank matrices. The optimizing objective of LoRA can
be formulated as follows:

max
Θ

∑︁
(𝑥,𝑦) ∈Z

|𝑦 |∑︁
𝑡=1

log
(
𝑃Φ0+ΔΦ(Θ) (𝑦𝑡 |𝑥,𝑦<𝑡 )

)
, (2)

where LoRA introduces parameters Θ, which are smaller in size in
comparison to the original LLM parameters Φ0.

4 LARGE LANGUAGE-RECOMMENDATION
ASSISTANT (LLARA)

To incorporate the behavioral patterns learned by traditional recom-
menders into LLMs, we propose an end-to-end framework, Large
Language-Recommendation Assistant (LLaRA), as depicted in Fig-
ure 2a. Specifically, beyond the text-only prompting, it exploits a
hybrid prompting to align the behavioral representations, as de-
rived from recommendation systems, with the language space of
LLMs. It then employs curriculum learning — first focusing on
text-only prompting, then progressively transitioning to hybrid
prompting. This progressive strategy enables the LLM to familiar-
ize the recommendation mechanism and internalize the behavioral
knowledge of conventional recommenders. We now delve into the
detailed architecture and training paradigm of LLaRA.
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Input: This user has watched Titanic [PH], Roman Holiday 
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candidates are The Wizard of Oz [PH], Braveheart [PH],…, 

Waterloo Bridge [PH],… Batman & Robin [PH]. Choose 

only one movie from the candidates. The answer is

Output: Waterloo Bridge.

Input: This user has watched Titanic [embs
14], Roman Holiday 
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20], .... Gone with the wind [embs

37] in the previous. Please 

predict the next movie this user will watch. The movie title 

candidates are The Wizard of Oz [embs
5], Braveheart [embs

42],…, 

Waterloo Bridge [embs
20],… Batman & Robin [embs

19]. Choose 

only one movie from the candidates. The answer is

Output: Waterloo Bridge.

(a) Text-only prompting method. (b) Hybrid prompting method.

Figure 3: Illustration of text-only and hybrid promptingmethod. (a) Text-only prompting represents items with the combination
of the textual token and a placeholder token. (b) Hybrid prompting represents items with the integration of the textual token
and the behavioral token. Note that <PH> indicates a special placeholder token, reserved for substitution by the behavioral
token <𝑒𝑚𝑏𝑖𝑠> throughout the progressive learning procedure.

4.1 Item Representation
Textual Token Representation. Textual features of items, such as
titles and descriptions, are the key to harnessing the commonsense
knowledge inherent in LLMs. Formally, for an item 𝑖 with the text
metadata 𝑡𝑥𝑡𝑖 , we obtain its textual tokens <embit> as follows:

<embit> = LLM-TKZ(𝑡𝑥𝑡𝑖 ), (3)

where LLM-TKZ(·) presents the LLM tokenizer and word embed-
ding layer, encapsulating the process of transforming textual meta-
data into token representations. Such textual token representations
of items, residing within the language space, are inherently com-
patible with LLMs.

Behavioral Token Representation. In parallel, conventional se-
quential recommender models, such as GRU4Rec [16], Caser [44],
and SASRec [25], effectively capture sequential patterns within ID-
based item embeddings after training on the historical interaction
data. Formally, for item 𝑖 , its ID-based representation learned by
the conventional recommendation model is expressed as:

eis = SR-EMB(𝑖;Θ𝑒 ), (4)

where SR-EMB(·) is the function that generates the item embed-
ding with the sequential recommender SR parameterized by Θ𝑒 ,
and eis ∈ R𝑑 is the 𝑑-dimensional representation of item 𝑖 .

In contrast to the item-aware texts that can be naturally inserted
into the prompt and easily interpreted by LLMs, the ID-based item
representations might be incompatible with the text nature of LLM
prompts. Consequently, we view the ID-based representations as a
distinct modality, separate from textual data. To bridge the modality
gap, it is essential to map the ID-based representation space of
recommenders into the language space of LLMs. This alignment
allows LLMs to interpret and leverage the behavioral knowledge
distilled by conventional recommenders.

To facilitate the alignment, we introduce a specialized module,
SR2LLM, as illustrated in Figure 2b. Specifically, we project the ID-
based item representation eis into the LLM space with a trainable
projector Proj (i.e., two-layer perceptions). This process results
in the generation of a behavioral token representation, <embis>,
formalized as:

<embis> = Proj(eis;Θ𝑝 ), (5)
with Θ𝑝 as the parameters of the trainable projector.

Hybrid Token Representation. Upon acquiring the textual to-
kens <embit> and the behavioral token <embis> for item 𝑖 , we pro-
ceed to integrate these two components. This integration facilitates

a comprehensive description of item 𝑖 , effectively combining the
distinct yet complementary aspects captured by each token:

<embic> = Concat(<embit>, <embis>) . (6)

4.2 Hybrid Prompt Design
Text-Only Prompting. For converting sequential interaction data
into training data suitable for LLM instruction tuning, our initial
approach adopts a straightforward method known as text-only
prompting. This approach represents items via textual metadata
within the prompts, as illustrated in Figure 3a. The input prompts
𝑥 encompass several key elements:

(1) Task Definition: a clear description of the sequential recom-
mendation task (e.g., “predict the next movie this user will watch”).

(2) Interaction Sequence: the sequence of historical user-item
interactions (e.g., “Titanic <PH>, Roman Holiday <PH>, . . . , Gone
with the wind <PH>”).

(3) Candidate Set: the set of candidate items, from which the
LLM is to generate responses to the given task (e.g., “The Wizard of
Oz <PH>, Braveheart <PH>, . . . , Waterloo Bridge <PH>, . . . , Batman
& Robin <PH>”).

Within the input prompt, each item is represented using the
textual tokens followed by a placeholder token. Additionally, the
output 𝑦 comprises the textual tokens corresponding to the next
item with which the user will engage (e.g., “Waterloo Bridge”).

Hybrid Prompting. To incorporate behavioral insights captured
by recommender models into the prompts, we devise a hybrid
prompting method, as exhibited in Figure 3b. Formally, we consider
a user 𝑢 with a historical sequence of interactions involving items
denoted as ℎ1, ℎ2, . . . , ℎ𝑛 . The user is presented with a set of candi-
date items, represented as C = {𝑐1, 𝑐2, . . . , 𝑐𝑚}, from which the user
may select the next item of interest. Thus the three primary compo-
nents of hybrid input prompts 𝑥 are transformed correspondingly
as follows:

(1) Task Definition: identical to the text-only prompting method,
which describes the sequential recommendation task in text.

(2) Interaction Sequence with Hybrid Item Representations:
the sequence of historical user-item interactions, represented
as <embh1c >, <embh2c >, . . . , <embhnc > (e.g., Titanic <emb14s >, Ro-
man Holiday <emb20s >, . . . , Gone with the wind <emb37s >).

(3) Candidate Set withHybrid ItemRepresentations: the set of
item candidates represented with the integration of textual and
behavioral tokens as <embc1c >, <embc2c >, . . . , <embcmc >, from
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which the LLM is expected to generate responses (e.g., The Wiz-
ard of Oz <emb5s>, Braveheart <emb42s >,. . . , Waterloo Bridge
<emb20s >,. . . , Batman & Robin <emb19s >).

This approach utilizes a fusion of textual and behavioral tokens,
as formulated in Equation (6), to represent items. This contrasts
with the text-only prompts, which rely solely on textual tokens as
outlined in Equation (3), thereby enriching the prompt with a more
comprehensive understanding of user-item interactions.

Our hybrid prompt design facilitates integration of textual meta-
data and ID-based item embeddings sourced from a well-trained rec-
ommender model. This design addresses the limitations of prompts
that rely exclusively on either ID-based or textual data, thereby
generating more accurate recommendations.

4.3 Curriculum Prompt Tuning
Considering the design of LLMs, which predominantly train on
data in text, the task of comprehending modalities — behavioral
tokens distilled from recommender models — presents a notable
challenge. While the text-only prompting aligns closely with the
LLMs’ training and is thus more readily assimilated, the hybrid
prompting, representing a deviation from typical language data,
introduces a more complex task.

Drawn inspiration from curriculum learning [3], which empha-
sizes the importance of training the model from simple to more
challenging learning tasks, we design a curriculum prompt tuning
scheme in LLaRA. In general, the tuning process begins by focus-
ing on the more straightforward prompting method — text-only
prompting method. This initial phase allows the model to establish
a fundamental grasp of the sequential recommendation task. Sub-
sequently, we gradually introduce the hybrid prompting method
that incorporates behavioral tokens, thereby elevating the complex-
ity of the tuning process. This step-wise strategy ensures that the
model is not overwhelmed by the complex task. Ultimately, our
LLM-based recommender will be fully integrated with the hybrid
item representation. This entire learning trajectory is shown as the
gradient-colored rectangle in Figure 2a.

Formally, this learning process can be articulated through the
subsequent stages, corresponding point-to-point with the three
pivotal phases of curriculum learning.

(1) Complexity Assessment: The initial step of curriculum learn-
ing is to assess the complexity of each task. In LLaRA, the task
complexity is highly related to the integration of behavioral tokens
in the hybrid prompt design. Therefore, we define the easy and
hard learning tasks, where the easy task adopts the sequential data
reformatted into the text-only prompts as depicted in Figure 3a,
whereas the hard task employs the data reformatted into the hybrid
prompts as elucidated in Figure 3b. Specifically, the loss function of
the easy task can be formulated as:

𝐿𝑒𝑎𝑠𝑦 (𝑥𝑒 , 𝑦𝑒 ) = −
|𝑦𝑒 |∑︁
𝑡=1

log
(
𝑃Φ0+ΔΦ(Θ) (𝑦𝑒𝑡 |𝑥𝑒 , 𝑦𝑒<𝑡 )

)
, (7)

where (𝑥𝑒 , 𝑦𝑒 ) is the text-only prompts shown in Figure 3a. Besides,
the loss function of the hard counterpart can be formulated as:

𝐿ℎ𝑎𝑟𝑑 (𝑥ℎ, 𝑦ℎ) = −
|𝑦ℎ |∑︁
𝑡=1

log
(
𝑃Φ0+ΔΦ(Θ)+Θ𝑝+Θ𝑒

(𝑦ℎ𝑡 |𝑥ℎ, 𝑦ℎ<𝑡 )
)
, (8)

where Θ𝑝 and Θ𝑒 are the parameters of the projector and the em-
bedding layer of the conventional sequential recommender, respec-
tively, and (𝑥ℎ, 𝑦ℎ) represents the hybrid prompt in Figure 3b.

(2) Scheduler Formulation: After acquiring the learning objec-
tives of the easy and hard tasks in Equation (7) and (8), respectively,
we can formulate the curriculum scheduler by transferring from
the easy task to the hard task gradually in the training process.
Specifically, we denote 𝑝 (𝜏) as the probability of learning the hard
task at training time 𝜏 , while 1 − 𝑝 (𝜏) is the probability of the easy
task, correspondingly. Naturally, 𝑝 should be small at the begin-
ning and gradually increase in the learning process, which can be
formulated in a continuous manner:

𝑝 (𝜏) = 𝜏

𝑇
(0 ≤ 𝜏 ≤ 𝑇 ), (9)

with the total training time accumulated to 𝑇 .

(3) Training Execution: To strike a balance between efficiency
and efficacy, we conduct LoRA tuning as introduced in Equation (2)
for the LLM, while training the projector at the same time. Formally,
we define the indicator function:

I(𝜏) =
{
1, learning hard task (w.p. 𝑝 (𝜏))
0, learning easy task (w.p. 1 − 𝑝 (𝜏))

. (10)

Therefore, the learning objective of LLaRA evolves from the easier
task to the harder task:

min
Θ,Θ𝑝

∑︁
(𝑥,𝑦) ∈Z

((1 − I (𝜏)) 𝐿𝑒𝑎𝑠𝑦 (𝑥,𝑦) + I (𝜏) 𝐿ℎ𝑎𝑟𝑑 (𝑥,𝑦)) . (11)

This gradual learning process effectively facilitates the injection
of an additional modality, thereby actualizing the hybrid prompting
method. By adopting the curriculum prompt tuning strategy, we
ensure a seamless transition from the model’s initial understanding
of textual metadata to its eventual comprehension of more complex
ID-based item embeddings from traditional recommenders. This
strategy not only acquaints LLMs with the recommendation mech-
anism, but also enhances LLMs with the behavioral knowledge
encapsulated in the sequential recommenders.

5 EXPERIMENTS AND RESULTS
In this section, we evaluate our proposed framework LLaRA on
three real-world datasets, and compare it with several baselines, in-
cluding traditional sequential recommender models and LLM4Rec
models. Additionally, we carry out two ablation studies to demon-
strate the substantial enhancements brought about by the hybrid
promptingmethod and curriculumprompt tuning strategy of LLaRA.
Furthermore, we present case studies to explicitly show our advan-
tages over baselines. To validate the superiority of our framework,
we will showcase it by answering research questions as follows.
• RQ1: How does LLaRA perform compared with traditional se-
quential recommender models and LLM-based methods?
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Table 1: Statistics of Datasets.
Dataset MovieLens Steam LastFM

# Sequence 943 11,938 1,220
# Item 1,682 3,581 4,606
# Interaction 100,000 274,726 73,510

• RQ2: How does our hybrid prompting perform in comparison
to other forms of item representation in prompt design?

• RQ3: How does our curriculum learning schememeasure against
other modality injection methods?

5.1 Experimental Settings
5.1.1 Datasets.

• MovieLens [14] is a commonly-used movie recommendation
dataset that contains user ratings and movie titles.

• Steam [25] encompasses user reviews for video games on the
Steam Store, in addition to game titles.

• LastFM [5], collected from the Last.fm online music platform, in-
cludes user-artist listening relationships and the names of artists.
Given that tuning LLMs is more time-consuming than training

traditional recommenders, we choose the MovieLens100K dataset
for our experiment to ensure that the dataset size remains man-
ageable. Regarding the Steam dataset, we initially eliminate users
with fewer than 20 reviews, aligning with the processing method
employed for MovieLens. Then, we randomly select a third of the
users and a third of the games, maintaining their interactions to
derive a dataset of a moderate size. For all three datasets, we arrange
sequences chronologically and divide the data into train, validation,
and test subsets at a ratio of 8:1:1. This partitioning approach guar-
antees that subsequent interactions do not appear in the training
data, thereby circumventing any potential information leakage [24].
Detailed statistics of the datasets are provided in Table 1. Moreover,
we retain the last 10 interactions as the historical sequence, padding
sequences with fewer than 10 interactions.

5.1.2 Implementation Details. We select Llama2-7B [46] as the
LLM backbone. To ensure the flexibility of our textual interface,
the instruction format for training and testing is randomly sam-
pled from several prompts. Our implementations for conventional
recommenders follow [52], employing the Adam optimizer, with a
learning rate of 0.001, an embedding dimension 𝑑 of 64, and a batch
size of 256. Furthermore, we conduct a grid search in [1e-3, 1e-4,
1e-5, 1e-6, 1e-7] for the coefficient of L2 regularization. To mitigate
the impact of randomness, we report the average outcomes of five
runs using different random seeds. For all methods related to LLMs,
each experiment is trained for a maximum of 5 epochs, with a batch
size of 128. We employ a warm-up strategy for the learning rate,
initiated with 1/100 of the maximum learning rate, and adjust it
over steps using a cosine scheduler.

5.1.3 Evaluation Metrics. For each sequence, we randomly select
20 non-interacted items to construct the candidate set, ensuring the
inclusion of the correct subsequent item. LLaRA and other baseline
models aim to identify the correct item from this candidate set, and
their performance is evaluated using the HitRatio@1 metric. With
appropriate prompting, LLM-based recommenders can generate
a single candidate item as required. As for traditional models, we

MovieLens Steam LastFM
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Figure 4: The performance comparison of different item rep-
resentation methods (i.e., numerical index, behavioral token,
textual feature, and hybrid representation). The hybrid rep-
resentation is adopted in LLaRA.

select the candidate item with the highest probability as the pre-
diction. Meanwhile, since LLaRA employs a generative paradigm
for prediction, which may yield invalid responses such as nonsen-
sical words or items outside the candidate sets, we introduce an
additional metric — valid ratio. It quantifies the proportion of valid
responses (i.e., items in the candidate set) across all sequences, serv-
ing as a measure of the models’ capability of instruction following.

5.2 Performance Comparison (RQ1)
In this section, we compare LLaRA against both traditional and LLM-
based baselines, taking into account metrics of both HitRatio@1 and
valid ratio on MovieLens, Steam, and LastFM datasets, to showcase
the effectiveness and robustness of LLaRA.

5.2.1 Baselines.

• Traditional Sequential Recommenders: GRU4Rec [16], Caser
[44], and SASRec [25], are RNN-based, CNN-based, and attention-
based sequential recommenders, respectively.

• LLM-basedModels: (1) Llama2 [46] is a well-known open-source
LLM released by Meta. (2) GPT-4 [36], released by OpenAI, is
a milestone of LLMs excelling in various tasks. (3) MoRec 1

[54] enhances the traditional recommenders by encoding item’s
modality features, such as text features. (4) TALLRec 2 [2] con-
ducts instruction tuning for LLMs on recommendation corpus.

5.2.2 Results. We implement LLaRA framework on item embed-
dings derived from three traditional sequential recommendation
baselines (i.e., GRU4Rec, Caser, and SASRec). Comparing LLaRA
with the aforementioned baseline models, the results are shown in
Table 2 3. The observations can be summarized as follows.

(a) LLaRA outperforms all baselines on all three datasets. Specif-
ically, it achieves the highest HitRatio@1 metric of 0.4737, 0.4949
and 0.4508 on MovieLens, Steam and LastFM, respectively. This
1For MoRec, we adopt BERT as the text encoder and SASRec as the recommender
backbone, consistent with the officially provided implementation.
2TALLRec predicts YES/NO for the target item, thus we adapt it to our setting –
selecting the next item from a provided candidate set.
3Note that the relative improvement of GRU, Caser, and SASRec is calculated by the
LLaRA implemented on the item embeddings derived from their corresponding models,
while that of LLM-based methods is calculated by the LLaRA implemented on SASRec.
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Table 2: The Results of LLaRA compared with traditional sequential recommender models and LLMs-based methods. Bold and
underlined indicate the best and the second-best performance, respectively. *(𝑝-value << 0.05).

MovieLens∗ Steam∗ LastFM
ValidRatio HitRatio@1 ValidRatio HitRatio@1 ValidRatio HitRatio@1

Traditional
GRU4Rec 1.0000 0.3750 1.0000 0.4168 1.0000 0.2616
Caser 1.0000 0.3861 1.0000 0.4368 1.0000 0.2233
SASRec 1.0000 0.3444 1.0000 0.4010 1.0000 0.2233

LLM-based

Llama2 0.4421 0.0421 0.1653 0.0135 0.3443 0.0246
GPT-4 0.9895 0.2000 0.9798 0.3626 1.0000 0.3770
MoRec 1.0000 0.2822 1.0000 0.3911 1.0000 0.1652
TALLRec 0.9263 0.3895 0.9840 0.4637 0.9836 0.4180

Ours
LLaRA (GRU4Rec) 0.9684 0.4421 0.9975 0.4924 0.9836 0.4344
LLaRA (Caser) 0.9684 0.4737 0.9966 0.4874 0.9918 0.4344
LLaRA (SASRec) 0.9684 0.4421 0.9975 0.4949 1.0000 0.4508

validates its effective integration of traditional sequential infor-
mation with the extensive world knowledge and robust reasoning
capabilities of LLMs.

(b) As for traditional sequential recommenders (i.e., GRU4Rec,
Caser, and SASRec), their HitRatio@1 scores are lower than those of
LLaRA. These models make predictions solely based on the behav-
ioral patterns of users, without integrating any semantic informa-
tion about items. This highlights the importance of incorporating
world knowledge about items into the recommendation process.

(c) When it comes to LLM-based methods, we can analyze them
from two perspectives. Firstly, the relatively poor performance
of vanilla LLMs (i.e., Llama2 and GPT-4) suggests that adapting
LLMs to recommendation tasks is crucial for enhancing their perfor-
mance in this domain. Secondly, the LLM4Rec methods (i.e.,MoRec
and TALLRec) show some improvements over the standalone LLM
methods. However, their recommendation ability, as denoted by
the HitRatio@1 metric, is still lower than that of LLaRA. MoRec
overlooks the reasoning ability of LLMs, while TALLRec neglects to
incorporate traditional sequential recommenders. This highlights
the need for a more comprehensive approach that combines the
strengths of both LLMs and traditional recommendation models.

(d) LLaRA achieves a high validity ratio of over 95% on all
datasets, illustrating the model’s instruction-following abilities
when generating recommendations. It’s worth noting that all gen-
erative methods that incorporate LLMs might generate invalid
answers. For instance, Llama2, which serves as the backbone LLM
of LLaRA, only achieves valid ratios of 0.4421, 0.1653, and 0.3443
on the MovieLens, Steam, and LastFM datasets, respectively. Re-
markably, LLaRA’s significant improvement in valid ratios can be
attributed to the fact that LLaRA has been instruction-tuned on the
sequential recommendation task.

5.3 Impact of Hybrid Item Representation (RQ2)
We conduct experiments to evaluate the item representation meth-
ods in sequential recommendation.

• Numerical Index: The items in the textual prompts are repre-
sented as numerical indices.

• Behavioral Token: The items are represented using behavioral
tokens projected from the sequential recommender space, em-
ploying the identical projector architecture as LLaRA.

Table 3: The HitRatio@1 of LLaRA compared with other
learning strategies. CL denotes curriculum learning and bold
indicates the best performance.

MovieLens Steam LastFM

Direct 0.4211 0.4899 0.4508
Two-stage 0.4316 0.4840 0.4344
LLaRA (CL) 0.4421 0.4949 0.4508

• Textual Feature: The items in the textual prompts are repre-
sented by their respective titles.

• Hybrid Representation: LLaRA proposes to represent items
with the fusion of behavioral tokens and textual tokens.
The results are shown in Figure 4, and we can observe that the

item representation approach utilized by LLaRA surpasses other
methods in terms of HitRatio@1 across all three datasets. This not
only corroborates the effectiveness of our innovative item represen-
tation method, but also illustrates the insufficiency of solely relying
on semantic information (i.e., textual metadata) or sequential infor-
mation (i.e., behavioral tokens).

Concerning numerical indices, no information is initially stored
in LLMs for these indices. The numerical indices are processed as
plain text by LLMs, culminating in their separation into several to-
kens by the LLM tokenizer. In the case of behavioral tokens, the LLM
merely capitalizes on the distribution of the inputted behavioral em-
beddings, without eliciting the knowledge encapsulated within the
LLM. As for textual features, users’ behavioral patterns are absent,
allowing the LLM to solely infer the correlations among items in a
user’s historical interactions, guided by the background knowledge
of these items preserved in the LLM. In contrast, LLaRA integrates
both world knowledge and sequential information, thereby improv-
ing performance in sequential recommendation.

5.4 Impact of Curriculum Prompt Tuning (RQ3)
This section delves into the development of an optimal learning
strategy for modality integration, by comparing three schemes:

(1) Direct Training:The hybrid item representation is employed
consistently during training.

(2) Two-Stage Training: The training process is split into two
stages. Initially, Llama2 is fine-tuned on the easy task wherein the
item representation is solely comprised of item titles.
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The watching history of a 
user is as follows. Please 
recommend a next movie 
for this user to watch.

The Great Escape

Mr. Smith Goes to Washington
SASRec

TALLRec

LLaRA
The Great Escape

(a)

The watching history of a 
user is as follows. Please 
recommend a next movie 
for this user to watch.

The Devil's Own

SASRec

TALLRec

LLaRA
Batman & Robin

(b)

Batman & Robin

Figure 5: Case studies. (a) The user prefers adventure and
war genres according to the viewing history. With the world
knowledge about these movies, TALLRec and LLaRA cor-
rectly recommend “The Great Escape”. (b) SASRec and LLaRA
recommend “Batman & Robin”, according to the sequential
behavioral patterns of users.

(3) LLaRA (CL): LLaRA framework adopts a single-stage cur-
riculum learning approach. Our curriculum learning strategy in-
structs the model to transition gradually from the basic text-only
prompting to the hybrid prompting.

All training procedures encompass a total of five epochs for fair,
while in the case of the two-stage method, the epoch number for
the first and second stages is 2 and 3, respectively.

A careful analysis of the results, presented in Table 3, reveals
that curriculum learning employed by LLaRA, consistently outper-
forms the other baseline methods across all datasets. Specifically,
the direct training method confounds the model with the hard
task throughout the entire process, while the two-stage training
approach fine-tunes Llama2 on the text-only and hybrid prompts
in the first and second stages, respectively. LLaRA starts from the
easy task and progressively changes to the hard task utilizing a
sampler to schedule the training process. The improvement brought
by this gradual learning method underscores the effectiveness of
our curriculum prompt tuning scheme.

5.5 Case Studies
We select two typical cases to analyze the impact of theworld knowl-
edge within LLMs, pertaining to items, as well as the behavioral
patterns exhibited by users on the sequential recommendation task.
To illustrate these two factors, we choose the answers generated
by three models, SASRec, TALLRec, and LLaRA.

5.5.1 World Knowledge in LLMs. For a userwho sequentiallywatched
“Ruby in Paradise”, “The Shawshank Redemption”, “Wallace&Gromit:
The Best of Aardman Animation”, “The Right Stuff”, “Braveheart”,
“The Princess Bride”, “North by Northwest”, “Some Like It Hot”,
“The Wizard of Oz”, and “The Hunt for Red October”, SASRec pre-
dicted the next film to be “Mr. Smith Goes to Washington”, while
TALLRec and LLaRA recommended “The Great Escape”. The user’s
actual subsequent interaction was indeed “The Great Escape” as
shown in Figure 5a.

We can observe that, the world knowledge about movies inherent
in the LLM can be highly beneficial for the sequential recommen-
dation, as demonstrated here. The genres of films this user has
watched include adventure (“The Princess Bride”, “The Wizard of
Oz”, “North by Northwest”) and war (“Braveheart”, “The Hunt for

Red October”). Since the LLM was capable of analyzing this user’s
watching history and understanding that the user has a preference
for adventure and war genres, this insight allowed the LLM to cor-
rectly predict that the user would choose “The Great Escape” (a
war adventure film) rather than “Mr. Smith Goes to Washington”
(a political drama). LLaRA, benefiting from the integration of the
LLM’s world knowledge, also forecasted the correct choice.

5.5.2 Sequential Behavioral Patterns in Traditional Sequential Rec-
ommenders. A user sequentially watched the following ten films:
“Mr. Holland’s Opus”, “Courage Under Fire”, “Rumble in the Bronx”,
“The Rock”, “Men in Black”, “Con Air”, “Volcano”, “The Lost World:
Jurassic Park”, “Dante’s Peak”, and “Metro” as shown in the Figure
5b. TALLRec predicted the subsequent film to be “The Devil’s Own”;
whereas both SASRec and LLaRA recommended “Batman & Robin”,
which aligns with the user’s actual interaction.

TALLRec, based on background knowledge, may have inferred
that the user prefers action, adventure, or thriller films over super-
hero movies. “The Devil’s Own” is an action thriller, while “Batman
& Robin” is a superhero film. However, SASRec, by analyzing the
user’s interaction history, unearthed sequential behavioral patterns
and recommended the correct film. LLaRA, due to the incorporation
of information from SASRec, also predicted the correct answer. This
case illustrates that the sequential behavioral patterns of users hold
substantial importance in sequential recommendation.

6 CONCLUSION AND DISCUSSION
In this paper, we introduce a novel framework, Large Language-
Recommendation Assistant (LLaRA) that integrates traditional rec-
ommender models with LLMs, and transforms the sequential rec-
ommendation task into language modeling. In particular, LLaRA
adopts curriculum learning that gradually injects sequential pat-
terns learned by traditional sequential recommenders into the tun-
ing process of LLMs. Empirical results show that LLaRA outper-
forms all baseline models in sequential recommendation, demon-
strating its effectiveness and promising performance. Ablation stud-
ies underscore the essential role of both the hybrid prompting
method and the curriculum prompt tuning strategy.

This work marks an initial step in transitioning from the tra-
ditional recommender models to a more sophisticated approach
underpinned by LLMs and opens up new research possibilities.
It lays the groundwork by proposing an alignment mechanism
to bridge conventional recommender models with LLMs. In the
future, researchers could continue to explore a unified recommen-
dation framework, with natural language as the interface, for more
complex and diverse recommendation scenarios. We hope the de-
velopment of LLaRA paves the way for a new era of personalized,
integrated, and universal recommender systems.
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