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ABSTRACT
Medication recommendation systems have gained significant at-
tention in healthcare as a means of providing tailored and effective
drug combinations based on patients’ clinical information. However,
existing approaches often suffer from fairness issues, as recommen-
dations tend to be more accurate for patients with common diseases
compared to those with rare conditions. In this paper, we propose a
novel model called Robust and Accurate REcommendations forMed-
ication (RAREMed), which leverages the pretrain-finetune learning
paradigm to enhance accuracy for rare diseases. RAREMed employs
a transformer encoder with a unified input sequence approach
to capture complex relationships among disease and procedure
codes. Additionally, it introduces two self-supervised pre-training
tasks, namely Sequence Matching Prediction (SMP) and Self Recon-
struction (SR), to learn specialized medication needs and interrela-
tions among clinical codes. Experimental results on two real-world
datasets demonstrate that RAREMed provides accurate drug sets for
both rare and common disease patients, thereby mitigating unfair-
ness in medication recommendation systems. The implementation
is available via https://github.com/zzhUSTC2016/RAREMed

CCS CONCEPTS
• Information systems → Recommender systems; • Applied
computing → Health informatics.
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Figure 1: (a) The long-tail distribution of disease codes in the
MIMIC-III [14] and MIMIC-IV [13] datasets. (b) Patients in
MIMIC-IV are divided into five equal-sized groups based on
the ranking of their least common disease codes in terms
of popularity. The subgraph illustrates the recommendation
accuracy, asmeasured by the Jaccard index, of SOTAmethods
for both the commonest and the rarest code groups.
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1 INTRODUCTION
Medication recommendation has garnered growing interest as a
means of offering secure and effective drug combinations tailored to
patients’ clinical information [1]. Through the utilization of medical
knowledge and extensive patient data, a medication recommenda-
tion system can facilitate healthcare professionals in prescribing
more precise and effective drug combinations while reducing the
occurrences of medication errors and adverse drug-drug interac-
tions (DDI) among selectedmedicines [29, 39]. The substantial harm
caused by inaccurate clinical decisions has led to a profound impact
on numerous patients [44]. Notably, it is estimated that at least 1.5
million individuals [2] are harmed by preventable medication errors
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each year, incurring a substantial raises of healthcare expenses [17].
Consequently, it is imperative to explore improved methodologies
for medication recommendations.

Current approaches to medication recommendation primarily
focus on maximizing overall accuracy by incorporating patients’
current medical conditions [34, 44] or clinical information from pre-
vious visits [28, 29, 31, 37–39]. While significant progress has been
made in comprehensive utilization these data, existing approaches
encounter fairness issues in terms of recommendations across pa-
tient groups. This stems from the highly skewed distribution of
clinical codes in Electronic Health Records (EHR) [16] — a digital
compilation of patients’ medical conditions, including diseases, pro-
cedures, medications and other clinical data during patient visits.
As illustrated in Figure 1(a), a small subset of codes exhibit high
prevalence, while the long tail comprises low-occurrence diseases
in two real-world EHR datasets. Consequently, patients resided in
the most common group receive significantly more accurate recom-
mendations compared to those in the rarest group, as depicted in
Figure 1(b). This disparity in accuracy across patient groups raises
concerns regarding equity and fairness, ultimately undermining
the reliability and utility of medication recommendation systems.

The key to promoting equity in medication recommendation is
to improve predictive accuracy for underserved patient populations,
particularly those with rare conditions. Nevertheless, accurately
modeling and recommending medications for rare diseases remains
as a challenging task. We summarize three central difficulties:

• Scarce quality data: Due to the inherently low prevalence of
rare diseases, there is a paucity of clinical data related to these
conditions in EHR [21]. This scarcity of high-quality data severely
impedes the accurate discernment of medication recommenda-
tion patterns for rare diseases.

• Intricate disease/procedure associations1: Distinct from com-
mon diseases, rare diseases often present complex combinations
of symptoms and clinical events [10, 22], which confounds efforts
to elucidate reliable disease associations. Moreover, the complex
relationships between diseases and procedures further obfuscate
appropriate medication selection [7, 30] — certain treatments
may be commonly applied across multiple conditions while the
suitability varies depending on disease severity.

• Tailored medication needs1: The atypical pathophysiology of
rare diseases often necessitates more precisely targeted pharma-
cological interventions. On the other hand, patients with rare
diseases tend to have more complicated therapeutic regimens,
warrant tailored medication recommendations.

In this work, we aim to foster fair medication recommenda-
tions by uplifting their accuracy on rare diseases. We resort to the
pretrain-finetune learning paradigm for addressing the aforemen-
tioned challenges, drawing inspiration from its success in natural
language processing [8, 24] and computer vision [5, 12], which yet
remains largely unexplored in medication recommendation. Com-
pared to traditional learning paradigms, e.g., supervised learning,
pretrain-finetune enjoys the merit of exploiting the unlabeled data
space through self-supervised pretraining, showing great poten-
tial in modeling intricate relations and addressing data scarcity.

1We will further discuss the profile of rare disease patients in Section 4.

However, implementing pretrain-finetune in fair medication rec-
ommendations presents challenges, which we summarize in two
key questions: (1) How to build an expressive encoder to fully
capture patients’ clinical information? This encoder should
be able to handle the complexity of rare diseases, ensuring that
the medication recommendations are based on a thorough under-
standing of the patient’s condition. (2) How to design optimal
pretraining objectives to learn rare diseases’ specialized med-
ication needs and interrelations among diseases, procedures,
and medications?

These two questions motivate us to propose a novel model called
Robust andAccurate REcommendations forMedication (RAREMed),
which brings the superiority of pretrain-finetune to representation
learning for fair medication recommendations. RAREMed utilizes a
transformer encoder architecture, which is effective at capturing
complex relationships. To comprehensively represent patient infor-
mation, unlike prior studies that overlook the intricate connections
between diseases and procedures [29, 31, 37, 39, 41], we introduce a
unified sequence approach to jointly encode both components. This
allows modeling potential associations, e.g., certain procedures are
applied differently depending on disease type and severity2 [7, 30],
better capturing rare disease complexity for accurate recommenda-
tions. Additionally, we enrich the standard token embedding layer
with segment embeddings and relevance embeddings, where segment
embeddings help differentiate between disease and procedure codes,
while relevance embeddings capture their varying importance. To
learn rare diseases’ tailored needs and maximize the utilization
of available data, we design two self-supervised pretraining tasks:
Sequence Matching Prediction (SMP) and Self Reconstruction (SR).
SMP predicts whether a disease-procedure sequence pair belongs
to the same patient, enabling the learning of contextual dependen-
cies and underlying connections among clinical codes. While SR
reconstructs the input sequence from the patient representation,
promoting a comprehensive comprehension of all codes, especially
the rare ones. By pretraining on these objectives, RAREMed ac-
quires robust encoding abilities, even for limited clinical codes.
Through experiments on two public real-world datasets, we demon-
strate that RAREMed provides accurate drug sets for both rare
disease and common disease patients, mitigating the unfairness in
the medication recommendation system.

In summary, our work makes the following main contributions:

• To our knowledge, this is the first work to address the unfairness
issue in medication recommendation, whereby patients with rare
diseases cannot obtain accurate recommendations.

• Wepropose a novelmedication recommendationmodel, RAREMed,
which combines pre-training techniques to learn robust repre-
sentations for rare diseases, thereby improving the accuracy and
mitigating unfairness in medication recommendation.

• Extensive experiments on two benchmark datasets demonstrate
RAREMed’s superiority over a range of state-of-the-art methods.
We will release the source code to facilitate future research.

2For example, the typical choice of non-invasive shock wave lithotripsy for kidney
stones suggests a better overall health condition for the patient, whereas endoscopic
surgery is considered a more severe option. [30]. In contrast, prostate enlargement is
commonly treated with endoscopic surgery for mild cases and shock wave lithotripsy
for severe cases involving prostate stones [7].
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2 RELATEDWORKS
Medication Recommendation. Methods for medication recom-
mendation can be broadly categorized into two groups: longitudinal
and instance-based approaches. Longitudinal methods make use
of patients’ longitudinal medical history, such as the approach
taken by Choi et al. [6], who employ a two-level temporal atten-
tion mechanism. Similarly, Shang et al. [28] pre-train their model
on single-visit data3 and fine-tune it using multi-visit data4. Addi-
tionally, Shang et al. [29] incorporate a graph-augmented memory
module and DDI graph to reduce adverse drug-drug interactions,
while Yang et al. [39] consider drug molecule structures for medica-
tion security. Wu et al. [37] introduce a copy-or-predict mechanism,
and Yang et al. [38] propose a residual-based recurrent network.
Sun et al. [31] present a causal model to address recommendation
bias, and Yang et al. [41] leverage a molecular substructure-aware
attentive method. More recently, Bhoi et al. [3] propose a fine-
grained medication recommendation approach. However, many of
these methods heavily rely on historical records, making them less
suitable for single-visit patients [3, 6, 28, 31], or exhibit reduced ac-
curacy in such cases [29, 37–39, 41]. Instance-based methods focus
on the current medical condition of patients. For instance, Zhang
et al. [44] utilize an RNN model based on disease codes. Wang et
al. [34] employ Deep Q Learning to capture correlations and ad-
verse interactions between medicines. However, these models may
not adequately capture patient-specific information, potentially
leading to reduced accuracy. Despite the initial success of these
methods, a common issue among them is fairness [4, 35]. Patients
with common diseases tend to receive more accurate medication
predictions compared to those with rare diseases. This discrepancy
undermines the overall performance and impairs the reliability and
usefulness of medication recommendation systems.
Fairness inRecommendation. Fairness concerns in recommender
systems have garnered significant attention due to observed sys-
tematic and unfair discrimination against certain individuals or
groups [4, 35]. Approaches to achieve fairness in machine learning
can be categorized into three groups: Pre-processing, In-processing,
and Post-processing [19]. Pre-processing methods modify the train-
ing data before the learning process to eliminate biases. For example,
Ekstrand et al. [9] address gender bias in movie/music recommen-
dation by creating gender-balanced data through random resam-
pling. Rastegarpanah et al. [25] propose adding "antidote" data to
improve the social desirability of recommender system outputs.
However, in medication recommendation, it is ethically unfeasi-
ble to modify individual patients’ Electronic Health Record (EHR)
data, limiting the effectiveness of these pre-processing methods.
In-processing methods focus on removing sensitive attribute infor-
mation through regularization or adversarial learning. For instance,
Yao et al. [42] propose fairness metrics as regularization in collabo-
rative filtering. Li et al. [18] introduce a text-based reconstruction
loss to ensure more balanced recommendation utility across all
users. However, these methods often involve non-convex optimiza-
tion and the fairness issues in this research is irrelevant to sensitive
attributes. Post-processing methods involve re-ranking the output
list of base ranking models to improve fairness. For instance, Geyik

3Single-visit patients have no historical visits, i.e., have only one visit recorded in EHR.
4Multi-visit patients have at least two visits in EHR.

et al. [11] employ interval constrained ranking to achieve multiple
group fairness. However, in medication recommendation, the focus
is on recommending a set of drugs rather than a ranking of indi-
vidual drugs, making the relevance of re-ranking less significant in
this task. In short, while methods have been proposed to tackle un-
fairness in recommender systems, their applicability to the specific
fairness challenges in medication recommendation is limited.
Pre-training in Recommendation. Pre-training techniques are
widely used in feature-based recommendation systems to enhance
user or item representations [43]. Qiu et al. [23] propose review en-
coder pre-training to complement user representations, whileWong
et al. [36] utilize pre-training on a large-scale knowledge graph for
conversational recommender systems. However, these methods are
not applicable to medication recommendation. Shang et al. [28]
introduce a pre-training method to address selection bias, but it
lacks procedure coding and recommendations for patients without
historical records, and fairness concerns remain unresolved.

3 PROBLEM FORMULATION
Electronic Health Record (EHR). An EHR, denoted as R =

{V ( 𝑗 ) }𝑁
𝑗=1, represents a collection of medical records for N pa-

tients. In this context, D = {𝑑1, 𝑑2, · · · , 𝑑 |D | } refers to the set of
diseases, P = {𝑝1, 𝑝2, · · · , 𝑝 | P | } denotes the set of procedures, and
M = {𝑚1,𝑚2, · · · ,𝑚 |M | } represents the set of medications. The
notation | · | indicates the cardinality of a set.

The record of patient 𝑗 , denoted as V ( 𝑗 ) = {d( 𝑗 ) , p( 𝑗 ) ,m( 𝑗 ) },
comprises three components. Firstly, d( 𝑗 ) = [𝑑1, 𝑑2, · · · , 𝑑𝑥 ] ∈ D
represents the sequence of diseases experienced by the patient,
ordered by their priority or significance5, reflecting their relative
importance in the patient’s healthcare journey. Similarly, p( 𝑗 ) =

[𝑝1, 𝑝2, · · · , 𝑝𝑦] ∈ P captures the sequence of procedures, also
ordered by priority. Here, 𝑥 and 𝑦 denote the lengths of the disease
and procedure sequences, respectively. Lastly, m( 𝑗 ) ∈ {0, 1} |M |

is a multi-hot vector indicating the medications prescribed to the
patient. Each element in m( 𝑗 ) corresponds to a specific medication
inM, and a value of 1 indicates that the medication was prescribed,
while 0 indicates its absence. We will simplify the notation by
omitting the superscript 𝑗 whenever there is no ambiguity.
DDI Graph. The Drug-Drug Interaction (DDI) Graph [26, 29, 39] is
a tool used to assess andmitigate the risk of adverse drug-drug inter-
actions within recommended medication combinations. It is repre-
sented by a symmetric binary adjacency matrix A ∈ {0, 1} |M |× |M| ,
where each element A𝑢𝑣 is assigned a value of 1 only if there exists
a harmful interaction between the 𝑢-th and 𝑣-th drugs.
Medication Recommendation Problem. Given a patient’s cur-
rent disease sequence d and procedure sequence p, along with the
DDI graph A, the objective is to generate an appropriate combina-
tion of medications Ŷ for the patient that maximizes prediction
accuracy while minimizing the risk of adverse drug interactions.
Fair Medication Recommendation Problem. In addition to the
conventional focus on overall accuracy, our research emphasizes
the fairness of medication recommendation. Fairness in this context
refers to providing accurate recommendations for both patients
with common diseases and those with rare diseases.
5The sequence numbers of priority are provided in the EHR datasets [13, 14], which
are labeled by qualified physicians.
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Figure 2: We categorize patients into 13 distinct groups based
on the frequency of their least common disease codes. Sub-
plots (a), (b), (c), and (d) depict the relationship between the
average disease count, procedure count, drug count, and drug
popularity, respectively, w.r.t. the rarest disease popularity.

4 PROFILE OF RARE DISEASE PATIENTS
In this section, we conduct empirical analysis on real-world EHR
dataset MIMIC-IV [13] to explore the profile of patients with rare
diseases. Specifically, we categorize patients into 13 groups based
on the popularity of their rarest disease codes, using uniform seg-
mentation across popularity intervals. We then calculate various
metrics for each group. From the results presented in Figure 2, we
make two important observations:

Observation 1: The data presented in Figure 2(a) and 2(b) clearly
demonstrates a negative correlation between disease count and
procedure count with patient disease popularity. This suggests that
as the rarity of a patient’s disease increases, their clinical condition
becomes more complex. Consequently, patients with rare diseases
exhibit more intricate combinations of clinical conditions.

Observation 2: Figure 2(c) and 2(d) demonstrate that patients
with rarer diseases tend to have a higher number of prescribed med-
ications and a lower popularity of these medications. This indicates
that rare diseases patients require more specifically tailored medi-
cation options, resulting in more complex therapeutic regimens.

In summary, our analysis highlights the increased complexity
of both clinical conditions and therapeutic regimens in patients
with rarer diseases. These findings underscore the need for more
advanced techniques, such as expressive encoder and pre-training
techniques, to effectively address the unique challenges faced by
rare disease patients.

5 OUR METHOD
Themodel framework of our RAREMed is illustrated in Figure 3.We
will commence by providing a detailed description of our encoder,
which is specifically designed to effectively model patient clinical
information. Subsequently, we will delve into the utilization the pre-
training techniques to enhance the representation of input clinical
codes, thereby ensuring equitable recommendation for patients
with both common and rare diseases. Lastly, we will elaborate on
the fine-tuning process of the pretrained model, customized for the
medication recommendation task.

5.1 Patient Representation
In the context of medication recommendation, it is crucial to obtain
a comprehensive representation of a patient’s clinical condition.
Traditional approaches commonly utilize disease and procedure
codes to represent patient information. However, these methods
have limitations. Some overlook certain codes [28, 44], while oth-
ers treat them as distinct elements and simply concatenate them
without considering their intricate associations [29, 37–39, 41]. Con-
sequently, these approaches result in models that are less expressive
in capturing the complexity of patient data.

To address this limitation, our approach considers disease and
procedure codes as a unified sequence and utilizes a transformer
encoder to generate a comprehensive representation of the pa-
tient’s clinical condition. Formally, for a patient V = {d, p,m}, we
construct the input sequence as follows:

𝑖𝑛𝑝𝑢𝑡 = [CLS] ⊕ d ⊕ [SEP] ⊕ p, (1)

where [CLS] represents a special token typically placed at the be-
ginning of the sequence, and its representation can be utilized as
the patient’s overall representation. [SEP] indicates another special
token that signifies the separation between the disease and pro-
cedure code sequences. The symbol ⊕ denotes the concatenation
operation between sequences.

To augment the standard token embedding layer, we incorporate
two additional embeddings: segment embedding and relevance em-
bedding. The segment embedding serves to differentiate between
the two categories of input codes, specifically disease and procedure,
allowing the model to discern context and distinguish between var-
ious types of medical information. While the relevance embedding
is utilized to capture the varying significance of different diseases
and procedures. Rather than treating all input codes equally, we
recognize that certain diseases and procedures may exert greater
influence on the patient’s clinical condition. To address this, we
sort the input codes based on their relevance to the patient. Mean-
while, we introduce two learnable relevance embedding matrices to
capture the priority information, in which e𝑑

𝑖
and e𝑝

𝑗
represent the

relevance embedding of the i-th disease and j-th procedure codes,
respectively.

Finally, the transformer encoder processes the embedded input
sequence, yielding the final patient representation r:

r = Encoder(𝐸tok (𝑖𝑛𝑝𝑢𝑡) + 𝐸seg (𝑖𝑛𝑝𝑢𝑡) + 𝐸rel (𝑖𝑛𝑝𝑢𝑡)) [0], (2)

where 𝐸tok, 𝐸seg, and 𝐸rel represent the token, segment, and rele-
vance embedding layers respectively. We take the representation
of [CLS] token as the patient representation.
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Figure 3: The illustration of our proposed RAREMed.We first
model the patient clinical information with three embedding
layers and a transformer encoder to get the patient represen-
tation. Then we pre-train our model on Sequence Matching
Prediction task and Self Reconstruction task. Finally, the
model is fine-tuned on medication recommendation task to
get the recommended medication combination.

5.2 Pre-training
In order to enhance the representation of clinical codes, especially
for rare ones, we introduce two self-supervised pre-training tasks
for the patient encoder. These tasks are specifically designed to
leverage the inherent patterns and relationships within the clinical
codes, enabling the model to better capture the nuances and com-
plexities of various clinical conditions. Through pre-training on
these tasks, our goal is to facilitate the acquisition of contextualized
representations that can more effectively capture the intricacies of
diverse clinical conditions, including rare cases.
Task #1: Sequence Matching Prediction (SMP): The objective
of this task is to capture the intricate associations between disease
and procedure codes more effectively. Specifically, we aim to train
the model to discern whether the disease and procedure sequences
belong to the same patient or not. This task is crucial for RAREMed
to better understand the contextual dependencies between different
clinical codes and improve its ability to capture the underlying
connections within the patient’s clinical condition.

To achieve this objective, we create an unpaired example for each
input sequence pair (d𝑖 , p𝑖 ) by randomly substituting either the
disease d𝑖 or procedure sequence p𝑖 with a corresponding sample
from a different patient. Subsequently, our model is trained using
Binary Cross-Entropy (BCE) loss to distinguish between the paired
and unpaired inputs:

𝐿𝑆𝑀𝑃 = − log(𝑦𝑖 ) + log(1 − 𝑦 𝑗 ), (3)

where𝑦𝑖 = 𝜎 (𝑊1r𝑖+𝑏1) ∈ R represents the predicted probability for
the paired input and 𝑦 𝑗 for the unpaired input. Here, 𝜎 denotes the
sigmoid function.𝑊1 ∈ R𝑑𝑖𝑚 and 𝑏1 ∈ R are trainable parameters.
Task #2: Self Reconstruction (SR): Considering the tailored med-
ication needs in this domain, it is essential for the patient repre-
sentation to retain knowledge of all the components in the input
sequence, especially rare clinical codes. Specifically, in this task, we
train RAREMed to reconstruct the input clinical code sequence from
the modeled patient representation r. This encourages RAREMed to
capture and preserve the essential information within the clinical
codes, ensuring a comprehensive representation of the patient’s
clinical condition.

The reconstruction loss, denoted by 𝐿𝑆𝑅 , is defined as:

𝐿𝑆𝑅 = −
|D |+|P |∑︁

𝑗=1

[
c𝑗 log(ĉ𝑗 ) + (1 − c𝑗 ) log(1 − ĉ𝑗 )

]
, (4)

where ĉ = 𝜎 (𝑊2r + 𝑏2) ∈ [0, 1] |D |+|P | represents the probabilities
of all diseases and procedures reconstructed by our model,𝑊2 ∈
R( |D |+|P | )×𝑑𝑖𝑚 and 𝑏2 ∈ R |D |+|P | are learnable parameters. Here,
c ∈ {0, 1} |D |+|P | represents the ground truth labels. c𝑗 is set to 1
only if the corresponding label is present in the input sequence.

5.3 Fine-tune and Inference
After pre-training RAREMed on two tasks, we fine-tune the model
to achieve accurate and fair medication recommendations. To pre-
dict the medication, we integrate a multi-label classification layer
and utilize the patient representation as input:

ô = 𝜎 (𝑊3r + 𝑏3), (5)

where ô ∈ [0, 1] |M | is the probability of medications being recom-
mended.𝑊3 ∈ R |M |×𝑑𝑖𝑚 and 𝑏3 ∈ R |M | are learnable parameters.

Following previous research works [29, 31, 38, 39], we fine-tune
the entire model using the subsequent objective functions. First,
we treat the prediction of each medication as an independent task
and use the BCE loss for optimization:

𝐿𝑏𝑐𝑒 = −
|M |∑︁
𝑖=1

[m𝑖 log(ô𝑖 ) + (1 −m𝑖 ) log(1 − ô𝑖 )] . (6)

Additionally, we employ themulti-label margin loss to ensure the
model assigns higher scores to the correct medications compared
to the incorrect ones:

𝐿𝑚𝑢𝑙𝑡𝑖 =
∑︁

𝑖, 𝑗 :m𝑖=1,m𝑗=0

max(0, 1 − (ô𝑖 − ô𝑗 ))
|M| . (7)

To ensure medication safety, we use the DDI loss to penalize
drug pairs with adverse interactions as described in [29, 39]:

𝐿𝑑𝑑𝑖 =

|M |∑︁
𝑖=1

|M |∑︁
𝑗=1

A𝑖 𝑗 · ô𝑖 · ô𝑗 . (8)

The balance between accuracy and safety is achieved by com-
bining the losses using a weighted sum:

𝐿 =(1 − 𝛽) ((1 − 𝛼)𝐿𝑏𝑐𝑒 + 𝛼𝐿𝑚𝑢𝑙𝑡𝑖 ) + 𝛽𝐿𝑑𝑑𝑖 , (9)

where 𝛼 and 𝛽 are hyperparameters balancing the contributions of
the different losses.
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During inference, medications with a probability greater than
the threshold 𝛿 = 0.5 are recommended to the patient. Therefore,
the final set of recommended medications Ŷ can be defined as:

Ŷ = {𝑖 |ô𝑖 > 0.5, 1 ≤ 𝑖 ≤ |M|}. (10)

6 EXPERIMENTS
In this section, we conduct comprehensive experiments to answer
the following four questions:
• RQ1: How does the performance of the proposed RAREMed com-
pare to that of existing medication recommendation methods?

• RQ2: Does the RAREMed effectively mitigate unfairness in med-
ication recommendations?

• RQ3: How do the individual components of the RAREMed influ-
ence its performance with respect to accuracy and fairness?

• RQ4: What are the influential factors, e.g., the DDI Graph, that
markedly impact recommendation performance of RAREMed?

6.1 Experimental Setup
Datasets. We used EHR data from two authentic EHR datasets,
namely MIMIC-III [14], MIMIC-IV [13] and DDI data extracted
from the TWOSIDES database [33]. Following previous works [29,
31, 39], we processed the datasets and randomly divided them into
training, validation, and testing sets in a ratio of 4:1:1. The statistics
of processed datasets are detailed in Table 1.
Evaluation Protocol. We evaluate the overall performance of all
methods using widely accepted metrics [29, 31, 37, 39, 41], includ-
ing Jaccard coefficient (Jaccard), Precision-Recall Area Under Curve
(PRAUC), F1-score (F1), DDI rate (DDI), and the average number
of recommended medicines (#MED), providing a comprehensive
assessment of overall recommendation performance. It is worth not-
ing that higher values of Jaccard, PRAUC, and F1 indicate improved
accuracy, while a lower DDI value suggests enhanced medication
safety. Furthermore, we believe that a successful medication recom-
mender should resemble the behavior of doctors by recommending
a similar number of medications, as reflected in the metric #MED.

Details of metrics are listed below. Building upon the formulation
detailed in Section 3,M represents the set of all medications in the
dataset, whilem, m̂ ∈ {0, 1} |M | signify the prescribed and predicted
medications to a patient, respectively.

Jaccard =
{𝑖 : m𝑖 = 1} ∩ { 𝑗 : m̂𝑗 = 1}
{𝑖 : m𝑖 = 1} ∪ { 𝑗 : m̂𝑗 = 1} .

F1 =
2R × P
R + P

,

where the recall and precision are formulated as

R =
{𝑖 : m𝑖 = 1} ∩ { 𝑗 : m̂𝑗 = 1}

{𝑖 : m𝑖 = 1} , P =
{𝑖 : m𝑖 = 1} ∩ { 𝑗 : m̂𝑗 = 1}

{ 𝑗 : m̂𝑗 = 1} .

PRAUC =

|M |∑︁
𝑘=1

P𝑘 (R𝑘 − R𝑘−1),

where P𝑘 , R𝑘 represent the precision and recall at cut-off 𝑘 .

Table 1: Statistics of processed data.

Item MIMIC-III MIMIC-IV
# of visits / # of patients 14949/6344 16117/6352
dis. / proc. / med. space size 2026/630/112 3415/1072/123
avg. / max # of visits 4.96/29 7.30/47
avg. / max # of dis. per visit 13.76/39 12.66/39
avg. / max # of proc. per visit 4.45/28 2.53/28
avg. / max # of med. per visit 19.60/52 12.79/53

DDI =
∑
𝑙,𝑘∈{𝑖:m̂𝑖=1} A𝑙𝑘∑
𝑙,𝑘∈{𝑖:m̂𝑖=1} 1

,

where A is the DDI graph defined in Section 3.
To examine the fairness dimension, we conduct a group-wise

comparison by categorizing all patients into five groups, denoted
as {G1, · · · ,G5}, according to the occurrence frequency of the least
common disease codes they exhibit. G1 represents patients with
the most commonly observed clinical codes, while G5 comprises
patients with the rarest codes. We calculate the average Jaccard
coefficients for each group to assess the accuracy of recommen-
dations for patients with different code occurrences. Additionally,
we compute the standard deviation (denoted as 𝜎) of these five Jac-
card coefficients to evaluate whether the models perform similarly
across various groups, indicating fairness in the recommendations.
ComparedMethods.We compare RAREMed against the following
baseline algorithms:
• LR is a standard logistic regression technique, where inputs are
represented as a multi-hot vector of length |D| + |P|.

• LEAP [44] is an instance-based method, which employs the
LSTM model to generate medication sequence.

• RETAIN [6] is a longitudinal model that utilizes two-level neural
attention mechanism to predict patients’ future condition.

• G-Bert [28] integrates the GNN representation into transformer-
based visit encoders, which is pre-trained on single-visit data.

• GAMENet [29] uses memory neural networks and graph convo-
lutional networks to encode historical EHR data and DDI graph.

• SafeDrug [39] leverages the drug molecular graph and DDI
graph to ensure the safety of medication recommendations.

• COGNet [37] uses a novel copy-or-predict mechanism which
frames drug recommendation as a sequence generation problem.

• MICRON [38] is an recurrent residual learning model that fo-
cuses on the change of medications.

• MoleRec [41] models the dependencies between patient’s health
condition and molecular substructures.

In addition to the medication recommendation methods mentioned
above, we also implement a baseline approach specifically designed
for fair recommendation in group-wise comparison:
• Rebalancing: We employ a resampling technique [9, 15] to ad-
dress the issue of data imbalance. Specifically, we calculate the
Inverse Propensity Score (IPS) score [27, 40] for each disease code.
Subsequently, we assign each patient a weight score based on
the IPS score associated with the rarest disease. In each training
epoch, we perform random sampling with replacement from the
training data, the probability of selecting a particular patient is
proportional to their assigned patient weight. We conduct exper-
iment for this approach on our RAREMed without pre-training.
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Table 2: Overall performance comparison in the single-visit setting. RETAIN and G-Bert are excluded as they cannot generate
recommendations for single-visit patients. Note that DDI rates of ground truth on MIMIC-III and MIMIC-IV are 0.082 and 0.081
respectively. The best and the runner-up results in each column are highlighted in bold and underlined, respectively.

MIMIC-III MIMIC-IV
Method Jaccard PRAUC F1 DDI #MED Jaccard PRAUC F1 DDI #MED
LR 0.4933 0.7639 0.6519 0.0786 16.85 0.4150 0.6782 0.5650 0.0736 9.85
LEAP 0.4526 0.6583 0.6154 0.0722 19.04 0.3907 0.5540 0.5437 0.0548 12.66
GAMENet 0.5210 0.7780 0.6762 0.0781 19.78 0.4401 0.6833 0.5933 0.0718 12.89
SafeDrug 0.5255 0.7732 0.6804 0.0688 20.84 0.4560 0.6858 0.6098 0.0689 14.07
COGNet 0.5109 0.6465 0.6676 0.0737 25.05 0.4313 0.6112 0.5850 0.0866 15.46
MICRON 0.5119 0.5190 0.6676 0.0610 20.94 0.4495 0.4353 0.6033 0.0502 14.50
MoleRec 0.5303 0.7795 0.6844 0.0692 21.30 0.4502 0.6867 0.6040 0.0699 14.05
RAREMed 0.5414 0.7922 0.6942 0.0529 19.66 0.4625 0.7008 0.6158 0.0508 12.51

Table 3: Overall performance comparison under the multi-visit setting.

MIMIC-III MIMIC-IV
Method Jaccard PRAUC F1 DDI #MED Jaccard PRAUC F1 DDI #MED
LR 0.4933 0.7639 0.6519 0.0786 16.85 0.4150 0.6782 0.5650 0.0736 9.85
LEAP 0.4526 0.6583 0.6154 0.0722 19.04 0.3907 0.5540 0.5437 0.0548 12.66
RETAIN 0.4922 0.7560 0.6517 0.0792 24.76 0.4113 0.6543 0.5674 0.0839 16.95
G-Bert 0.5037 0.7631 0.6617 0.0832 24.46 0.4292 0.6746 0.5822 0.0794 16.19
GAMENet 0.5205 0.7767 0.6754 0.0774 19.52 0.4462 0.6923 0.5979 0.0807 12.60
SafeDrug 0.5232 0.7699 0.6781 0.0698 20.67 0.4566 0.6867 0.6080 0.0644 14.00
COGNet 0.5177 0.6360 0.6715 0.0757 24.95 0.4518 0.6359 0.6026 0.0846 15.70
MICRON 0.5188 0.6398 0.6735 0.0658 19.51 0.4555 0.5350 0.6081 0.0528 13.24
MoleRec 0.5293 0.7786 0.6838 0.0698 21.27 0.4576 0.6933 0.6097 0.0683 14.19
RAREMed 0.5414 0.7922 0.6942 0.0529 19.66 0.4625 0.7008 0.6158 0.0508 12.51

We omit the evaluation of the 4SDrug, DrugRec, and REFINE
methods from our study due to their reliance on additional symptom
information [31, 32] or unavailability of the source codes [3].
Implementation Details. The hyper-parameters of all models
are determined based on their performance on the validation set.
RAREMed is pre-trained on the training set in a sequential manner,
first on the SMP task and then on the SP task, for 30 epochs respec-
tively. The transformer encoder in our model consists of 3 layers
with 4 attention heads, and the embedding dimension is set to 512.
The weights of the loss function, denoted as 𝛼 and 𝛽 , are set to 0.03
and 0.7, respectively. The parameters are trained using the AdamW
optimizer [20] with a learning rate of 1e-5 and weight decay of 0.1.

6.2 Overall Performance Comparison (RQ1)
We conduct experiments on two settings for a thorough comparison:
(1) Single-visit setting, where each visit is regarded as a separate
patient without historical records as described in Section 3; (2)
Multi-visit setting, where a patient may have multiple visits, and
the historical records are available when recommending medica-
tions for the second and subsequent visits. This setting is designed
for a fair comparison with longitudinal methods [29, 37–39, 41].

Based on the results presented in Table 2 and Table 3, we have
the following observations:

• Baseline Comparison. LR and RETAIN, which were not orig-
inally designed for medication recommendation tasks, exhibit

poor performance. LR overlooks the interaction among clini-
cal codes, while RETAIN fails to adequately capture the current
patient condition. Similarly, LEAP and G-Bert, which do not con-
sider the procedure sequence, also underperform in this domain.
Furthermore, COGNet and MICRON utilize historical informa-
tion in a specific manner, but their performance significantly
declines in the single-visit setting. By integrating external knowl-
edge such as EHR graph and drugmolecule structures, GAMENet,
SafeDrug and MoleRec achieve better performance. Interestingly,
these three methods perform even worse in multi-visit setting
compared to single-visit setting with MIMIC-III, highlighting the
complexity of leveraging historical information.

• Accuracy of RAREMed. Our RAREMed surpasses all the base-
line methods in terms of accuracy, exhibiting higher Jaccard
coefficient, F1 score, and PRAUC on both the MIMIC-III and
MIMIC-IV dataset. This superiority is observed not only in the
single-visit scenario (Table 2) but also in the multi-visit scenario
(Table 3). Remarkably, RAREMed achieves this improvement
without relying on historical records. This highlights the efficacy
of our medication recommendation framework, which can be
attributed to the meticulous design of the expressive encoder and
the effectiveness of the pre-training tasks employed.

• Security of RAREMed. RAREMed ensures the lowest DDI rate
compared to the ground-truth level and baseline methods, with
few exceptions. This showcases the system’s capability to effec-
tively balance between accuracy and safety, a topic that will be
further explored in Section 6.5.
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Table 4: Ablation study on MIMIC-IV dataset. Here, 𝜎 represents the standard deviation of Jaccard across five groups.

Model Overall Performance Group-wise Performance
Jaccard PRAUC F1 DDI #MED G1 G2 G3 G4 G5 𝜎

w/o P 0.4561 0.6939 0.6092 0.0509 12.94 0.4719 0.4666 0.4534 0.4475 0.4410 0.01157
w/o U 0.4589 0.6965 0.6122 0.0545 13.13 0.4773 0.4707 0.4558 0.4485 0.4423 0.01320
w/o s&r 0.4528 0.6892 0.6062 0.0554 13.15 0.4695 0.4646 0.4508 0.4451 0.4342 0.01286
RAREMed 0.4625 0.7008 0.6158 0.0508 12.51 0.4773 0.4702 0.4592 0.4544 0.4521 0.00962

6.3 Group-wise Performance Comparison (RQ2)
In this subsection, our objective is to examine model performance
among patient groups with varying levels of disease prevalence. Fig-
ure 4 depicts the performance of RAREMed and baseline methods,
from which the following observations can be made:

• Baseline Methods Yield Unfair Recommendations. Conven-
tional medication recommendation methods exhibit a notable de-
crease in accuracy as the frequency of disease codes decreases, as
illustrated in Figure 4(a). This leads to a higher standard deviation
of Jaccard across different groups, as depicted in Figure 4(b). No-
tably, G-Bert [28], which utilizes pre-training techniques, strug-
gles to achieve satisfactory accuracy for patients with rare dis-
eases, potentially due to its disregard for procedure codes and
subsequent failure to capture a comprehensive representation
of patients’ clinical information during pre-training. This under-
scores the superiority of our model structure and pre-training
task design. Additionally, Rebalancing, tailored to address fair-
ness concerns, also underperforms compared to RAREMed in
terms of both fairness and overall performance.

• RAREMed Effectively Addresses Fairness Concerns. As de-
picted in Figure 4(a), RAREMed demonstrates superior perfor-
mance for patients with rare diseases, while maintaining efficacy
for the common group. Additionally, RAREMed showcases consis-
tent performance across patient groups, as evidenced by minimal
variance in Jaccard compared to the baseline methods. This trend
highlights the strength of RAREMed in acquiring robust repre-
sentations, particularly for rare clinical codes, and its capability
to deliver fair medication recommendations for patients with
rare diseases.

• Pre-trainingDemonstrates Effectiveness onBiasedDatasets.
The results presented in Figure 4(c) and (d) highlight the over-
all positive impact of our pre-training strategy on both com-
mon group and rare group, with few exceptions. Specifically, on
MIMIC-III, where the disease distribution is less skewed, our
pre-training strategy consistently enhances performance across
various groups, as evidenced by the uniform improvement ratio
observed after 30 pre-training epochs. In contrast, on MIMIC-IV,
characterized by a more biased disease distribution and present-
ing greater challenges6, RAREMed notably improves the per-
formance of the rarest group, effectively mitigating unfairness.
The substantial improvement in overall accuracy on such a more
biased dataset is also noteworthy.

6This is supported by the extensive distribution of long-tail disease codes in MIMIC-IV,
as illustrated in Figure 1, and the greater variance of Jaccard scores across groups, as
presented in Table 4, in comparison to the findings in Figure 4(b).
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Figure 4: (a) Jaccard coefficients on various patient groups.
(b) Standard deviation of Jaccard coefficients across groups.
(c) and (d) The improvement ratio of Jaccard across groups
w.r.t. the number of pre-training epochs. The bold number
indicates the selected hyper-parameter.

6.4 Ablation Study (RQ3)
To evaluate the effectiveness of each component in RAREMed, we
conduct ablation study with the following ablation models:
• “w/o P”, which removes two pre-training tasks, resulting in ini-
tializing parameters of encoder and embedding layers randomly.

• “w/o U”, which disables the unified encoder and learns two
encoders for diseases and procedures seperately and then con-
catenates the output. This setup retains two pre-training tasks.

• “w/o s&r”, it disables segment and relevance embedding layers,
and patient representation relies solely on the token embedding.
We omit results on MIMIC-III, as they align with the same con-

clusion. We have the following observations from results in Table 4:
• “w/o P”. As anticipated, the diminished performance observed
in the "w/o P" variant underscores the importance of our pre-
training tasks. Notably, RAREMed outperforms "𝑤/𝑜 P" across
all five groups, affirming that our pre-training strategy not only
enhances performance on rare diseases but also preserves the
efficacy of the original model on other diseases. The enhancement
seen in RAREMed can be attributed to the augmented encoder
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obtained through the pre-training phase, enabling RAREMed to
grasp intricate disease/procedure associations and produce more
comprehensive patient representations.

• “w/o U”. RAREMed surpasses the “𝑤/𝑜 U” variant, particularly
in terms of fairness, further emphasizing the importance of cap-
turing and comprehending the associations between diseases and
procedures for fair medication recommendations.

• “w/o s&r”. RAREMed also outperforms the “𝑤/𝑜 s&r” variant.
Notably, the “𝑤/𝑜 s&r” variant also exhibits significantly fluctu-
ating performance across different patient groups. These results
highlight the crucial role played by the segment and relevance
embedding layers in capturing the complex relationships among
diseases and procedures, particularly for rare ones.

6.5 Hyperparameter Studies (RQ4)
We conducted an investigation to understand the influence of hyper-
parameters on the efficacy of RAREMed on the MIMIC-IV. Specifi-
cally, we considered four hyperparameters: the multi-label margin
loss weight (𝛼), the DDI loss weight (𝛽), the number of pre-training
epochs (#Epochs), and the embedding space dimension (𝑑𝑖𝑚).
Loss Weight. Figure 5(a) demonstrates that the value of 𝛼 signif-
icantly affects the size of the recommended medicine set. Addi-
tionally, we observed that the recommendation accuracy initially
increases and then declines as the number of recommended medi-
cations increases. This suggests that in addition to the ranking task
commonly considered in classic recommendation systems, the size
of recommended medication set is also an important factor in the
field of medication recommendation.

On the other hand, Figure 5(b) illustrates the impact of 𝛽 on
the DDI rate and Jaccard coefficient. As 𝛽 increases, the DDI rate
consistently decreases, while the Jaccard increases briefly and then
drops. This indicates that, overall, there is a trade-off relationship
between accuracy and security, while uncontrollable DDI (when
𝛽 = 0) also harms accuracy. Notably, even when the DDI rate is
restricted to less than 5% (when 𝛽 = 0.75), the accuracy of RAREMed
remains relatively high, demonstrating its robustness.
Number of Pre-training Epochs. Figure 5(c) illustrates the im-
pact of the number of pre-training epochs on the pre-training tasks
and the medication recommendation task. It is evident that as the
number of pre-training epochs increases, the model’s performance
in pre-training tasks (SR task and SMP task) improves. This obser-
vation indicates that the model acquires knowledge about clinical
code associations and gains comprehensive patient representations
during pre-training, which are crucial for medication recommen-
dation, particularly for patients with rare diseases. However, the
improvement in the downstream task (Jaccard) starts to diminish
after approximately 30 epochs. This phenomenon may be attributed
to overfitting in the pre-training task and the inherent differences
between the pre-training and downstream tasks. These findings
highlight the significance of striking an optimal balance between
the performance on pre-training tasks and the downstream medi-
cation recommendation task.
Embedding Dimension.As depicted in Figure 5(d), the increase in
embedding dimension initially enhances RAREMed’s performance
on both pre-training and downstream tasks, indicating an aug-
mented expressive capacity. However, beyond a certain threshold,
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Figure 5: Hyperparameter effects on model performance.

the model’s performance on SMP and downstream tasks begins to
decline, note that RAREMed is pre-trained first on the SMP task and
then on the SR task, excluding the influence of the SR task on the
SMP task. This decline in performance can be attributed to training
challenges such as gradient vanishing or explosion, which disrupt
convergence and hinder the model’s stability.

7 CONCLUSION
In this paper, we propose RAREMed, a novel medication recommen-
dation model designed to addresses the fairness issue in medication
recommendation systems. By focusing on enhancing accuracy for
patients with rare diseases, RAREMed leverages two self-supervised
pre-training tasks to learn specialized medication needs and interre-
lations. The model also utilizes a unified input sequence approach
to capture complex relationships among disease and procedure
codes. Experimental results on real-world datasets demonstrate
the effectiveness of RAREMed in providing accurate drug recom-
mendations for both rare and common disease patients, thereby
mitigating unfairness.

In future research, we intend to further explore the utilization
of patients’ historical records and additional clinical information,
such as demographics, lab data, notes, and imaging, to improve the
accuracy of medication recommendations. Additionally, incorpo-
rating more external knowledge during the pre-training phase and
exploring transfer learning across different electronic health record
(EHR) datasets are also promising avenues for further development.
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