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Abstract—Masked modeling has recently achieved remarkable
success in specific fields of vision and language, sparking a
surge of interest in graph-related research. However, Masked
Graph Modeling (MGM), which captures fine-grained local
information by masking low-level elements such as nodes, edges,
and features, limits itself to a sub-optimal position, particularly
on tasks requiring high-quality graph-level representations. Such
a local perspective disregards the graph’s global information
and structure. To address these limitations, we propose a novel
graph pre-training framework called Graph Contrastive Masked
Autoencoder (GCMAE). GCMAE leverages the strengths of both
MGM and Graph Contrastive Learning (GCL) to provide a more
comprehensive perspective of both local and global. Our frame-
work uses instance discrimination to learn global representations
of graphs and reconstructs the graph using masked low-level
elements. We augment the framework with a novel multi-view
augmentation module to further enhance the pre-trained model’s
robustness and generalization ability. We evaluate GCMAE on
real-world biochemistry and social network datasets, conducting
extensive experiments on both node and graph classification
tasks and transfer learning on downstream graph classification
tasks. Our experimental results demonstrate that GCMAE’s
comprehensive perspective of both local and global benefits model
pre-training. Moreover, GCMAE outperforms existing MGM and
GCL baselines, proving its effectiveness on downstream tasks.
Our code is available at https://github.com/lyc0930/GCMAE.

Index Terms—Self-Supervised Learning, Masked Graph Mod-
eling, Contrastive Learning, View Diversity

I. INTRODUCTION

In recent years, learning high-transferability graph represen-
tations without manual supervision has become an important
avenue of research, constituting the emerging field of graph
pre-training [1], [2]. Among several approaches, graph self-
supervised learning (GSSL) has risen to prominence. Inspired
by the remarkable successes of masked modeling techniques
in vision [3], [4], [5] and language [6], [7], masked graph
modeling (MGM) [8], [9], [10], [11] is garnering interest from
the GSSL community. MGM formulates the self-supervised
learning task as a graph reconstruction problem. Specifically,
it corrupts graph inputs by ablating low-level elements (e.g.,
nodes [9], edges [12], or features [8]), and then optimizes
models to reconstruct the missing elements, thereby capturing
the low-level information. Once sufficiently pre-trained, the
model can be fine-tuned on downstream tasks, leveraging the
transferable representations to boost performance.
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Nevertheless, a limitation of current MGM methods is their
focus on local graph structures without considering holistic
graph semantics — reconstructing masked low-level elements
encourages learning about local connectivity patterns, but fails
to distinguish among different graphs. To our knowledge, an
MGM paradigm that captures both local and global informa-
tion is largely unexplored.

In this paper, we aim to bridge this gap by integrating graph
contrastive learning (GCL) [13], [1], [14] into MGM. The
key idea of GCL is to first create multiple augmented views
of each graph by masking, then encourage augmentations
of the same graph to cluster together, while pushing apart
augmentations of different graphs. This forces the model to
learn useful global representations that distinguish between
graphs. While intuitively appealing, integrating GCL into
MGM still faces potential challenges, which we summarize
in two key questions:

• “Would MGM benefit from contrastive learning?” The di-
vergent emphasis on graph information between MGM and
GCL could potentially undermine their individual objectives.
A simplistic combination of their goals may result in a
compromise where MGM’s reconstruction performance is
sacrificed to accommodate GCL’s graph differentiation. This
potential conflict may explain why previous efforts have
largely overlooked the incorporation of GCL into MGM.

• “What kind of contrast will MGM benefit from?” A common
criticism of GCL is the heavy reliance on high-quality graph
augmentation to create views [15], [16], [17]. Most GCL
approaches utilize a single type of augmentation, such as
node-level [1], [17], edge-level [18], [19], [20], [21], or
feature-level masking [2], [22], [23]. This can risk corrupt-
ing the semantics of the graph and impairing generalization
[24], [1], [14], [25]. For instance, masking certain functional
groups in molecular graphs might alter their properties,
thereby misleading the representation learning of the overall
structure. Recent studies [26], [14], however, suggest that the
contrast of multi-view can address this issue. Performing
graph contrast across diverse views, such as simultaneous
node and edge masking, can preserve the graph semantics
from multiple perspectives, thus better preserving global
information. Nonetheless, these findings are limited to GCL,
and it remains an open question whether multi-view contrast
can benefit MGM, given that most MGM methods use a
single masking method [8], [9], [10], [11].
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Fig. 1: Illustration of masked graph modeling (MGM) and graph contrastive learning (GCL). (a): MGM has a local perspective
(e.g., green area) on low-level elements (i.e., node, edge and feature) in graphs by conducting substructure masking and
reconstruction. (b): GCL has a global perspective (e.g., yellow area) on graph-level representations by pulling the representations
of two augmented views of the same anchor graph close and pushing those of different anchors away.

In this paper, we propose a novel approach to address these
challenges. We present a unified framework that integrates
MGM and GCL in a synergistic manner, leveraging the
strengths of both while mitigating their potential conflicts.
Furthermore, we introduce a multi-view contrast strategy to
enhance the robustness and generalization of MGM. We
demonstrate the effectiveness of our approach through com-
prehensive experiments, showing significant improvements
over state-of-the-art methods. These two research questions
motivate us to explore the potential of integrating MGM
with GCL and introduce a simple but effective pre-training
method, Graph Contrastive Masked Autoencoder (GCMAE),
which synergistically combines the complementary strengths
of MGM and GCL to learn comprehensive graph represen-
tations. By scrutinizing the constituent components of MGM
and GCL, where MGM comprises graph masking and graph
reconstruction while GCL involves graph augmentation and
graph contrast, we identify a similar foundation, graph mask-
ing/augmentation, upon which to build. Therefore, we unify
the first components of MGM and GCL, graph masking, by
instantiating it as masking across node-, edge-, and feature-
aware views. Building upon this joint masking, GCMAE
contains two branches targeting local and global signals:
graph reconstruction and graph contrast. The reconstruction
branch employs a graph encoder-decoder on the feature view*,
learning node representations to recover the masked node
features and thereby distill the useful local information.

Meanwhile, the contrast branch guides the shared encoder
through the implementation of multi-view contrastive learn-
ing. This learning approach consists of both intra-view and
inter-view contrasts to distinguish between different graphs,
thereby encoding global information. Crucially, the inter-view
contrast serves as a bridge that connects the two branches by

*We leave the study of other views as future work.

incorporating the feature view into the process of negative
sampling, promoting the capture of multi-grained local and
global signals. Empirical results show the effectiveness of
GCMAE as compared to state-of-the-art MGM and GCL
methods (e.g., GraphMAE [8], RGCL [17]), in a wide range
of graph learning tasks, including node classification, graph
classification, and transfer learning [27], [28]. Overall, our
contributions in this paper are summarized as:

• We introduce GCMAE, a novel framework that lever-
ages contrastive learning to enhance graph representations
learned via masked graph modeling.

• GCMAE provides a new multi-view perspective in graph
representation learning, which can effectively intervene in
the cross-information between multiple views, and further
improve the model’s capability to learn global information.

• Extensive experiments demonstrate that, on benchmark
datasets (e.g., Cora, CiteSeer, PubMed [29], and TU-
Datasets [30]), GCMAE outperforms some leading methods
(e.g., GraphMAE [8] and RGCL [17]).

II. RELATED WORK

Recent advances in self-supervised learning (SSL) on graphs
have led to the emergence of two major approaches: generative
and contrastive. The masked graph modeling (MGM) approach
falls under the generative category, which masks nodes or
edges in a graph, and then trains models to reconstruct
the missing elements based on the remaining information.
Graph contrastive learning (GCL) exemplifies the contrastive
approach. It leverages the notion of similarity in embedding
space, where similar instances are pulled closer and dissimilar
ones are pushed apart. Both approaches have shown promising
results in various graph-based tasks.



A. Masked Graph Modeling

In the realm of generative SSL frameworks, MGM has
emerged as the leading approach for many graph-based tasks.
Taking inspiration from the widely applied masked language
modeling (MLM) and masked image modeling (MIM) tech-
niques in language and vision fields, MGM pre-trains a graph
autoencoder by masking a subset of low-level elements in the
input graph and reconstructing the masked part with partially
visible elements [6], [3].

Recent studies aimed to improve upon MGM, garnering
significant attention. For instance, MGAE [10] proposes a tai-
lored cross-correlation decoder with high-ratio edge masking
to capture cross-correlations between masked edge endpoints
at multiple granularities. GMAE [9] adopts masking and asym-
metric encoding-decoding in graph transformers to reduce
memory consumption. GraphMAE [8] focuses on node feature
reconstruction with a scaled cosine error and re-masking
decoding strategy. GraphMAE2 [31] regularizes feature recon-
struction to improve robustness against disturbance in masked
feature reconstruction. MaskGAE [12] employs vanilla edge
masking and uses two decoders to predict the masked edges
and the degrees of the associated nodes, respectively. HGMAE
[11] applies MGM to heterogeneous graphs to handle various
node attributes with different node positions.

However, current MGM frameworks suffer from a limitation
in that their fine-grained substructure masking and recon-
struction mechanism only provides local supervision signals
and leaves the holistic graph semantics largely untouched, as
illustrated in Figure 1(a). Consequently, MGM models may
lack a global perspective and become sub-optimal, especially
for graph-level tasks.

B. Graph Contrastive Learning

Graph contrastive learning (GCL) has emerged as an effec-
tive approach to obtaining instance-discriminative representa-
tions for graphs. The central idea behind GCL is to maximize
agreement between differently augmented views of the same
graph while minimizing agreement between views of different
graphs. Divergent from MGM’s focus on local structure, GCL
optimizes the coarse-grained graph-level representations from
a global perspective.

GraphCL [1] investigates the impact of various combina-
tions of four types of graph augmentations on GCL. JOAO
[32] formalizes GCL as a bi-level min-max optimization and
enables learning to automatically select graph augmentation
tasks and graph representation models. InfoGCL [33] reduces
mutual information between contrasting components while
maintaining the integrity of task-relevant information. AD-
GCL [18] and RGCL [17] focus on preserving the semantics
of the original graph in augmented views from the perspective
of edge and node, respectively.

Compared to MGM, GCL provides supervision at the graph
level, equipping the model with a global perspective. This
raises the natural question of whether GCL could supplement
MGM to gain comprehensive local and global features.
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Fig. 2: Typical graph augmentation methods are operated on
the low-level elements (nodes, edges, or features) of graphs
including node dropping, edge perturbation, feature masking
etc.which create different views

C. View Diversity

Graph augmentation is the prerequisite and crucial enabler
for both MGM and GCL, as it masks or corrupts graph
elements to create diverse views. Augmentations are typically
operated on the nodes [13], [17], edges [18], [12], or features
[2], [23], [22], [8], [31], as shown in Figure 2.

Conceptually, a high-quality graph augmentation is sup-
posed to (1) preserve the semantic information (i.e., label-
invariant), and (2) contain an adequate level of diversity for
better generalization. This dual importance of both properties
has been highlighted in many GCL methods. SimCLR [24]
points out that the combination of data augmentations plays
a crucial role in effective prediction tasks and empirically
shows that “no single transformation suffices to learn good
representations”. In graph area, GraphCL [1] demonstrates the
crucial role of data augmentation in incorporating various pri-
ors for better representation learning, forming an assertion that
“composing different augmentations benefits more”. SRGCL
[26] also verifies that an increase in view diversity can improve
the performance of the pre-trained model.

The aforementioned GCL studies demonstrate that one sin-
gle view (i.e., only node-, edge- or feature-level augmentation)
guides the pre-trained model to a sub-optimal position, while
cross-view contrast benefits its representative ability and gen-
eralization performance. However, the potential of multi-view
augmentation is under-explored in MGM, which uses single
node [9], edge [10], [12] or feature [8], [31] masking. Specifi-



cally, GMAE [9] only employs a naive random node masking
strategy that creates node views with large masking ratios to
reduce the size of the input feature matrix, thereby alleviating
the memory consumption associated with the transformer
architecture. MaskGAE [12] attempts a masking strategy based
on random walking to create edge views, only focusing on the
masking and reconstruction of edges to construct supervision
signals and reducing redundancy between paired subgraph
views. GraphMAE [8] solely focuses on creating a feature
view following the validated effectiveness of feature masking
in CV and NLP.

Thus, we are motivated to explore the potential of view
diversity in the combined design of MGM and GCL to further
enhance the generalization.

III. METHODOLOGY

In this section, we present our novel graph pre-training
framework, Graph Contrastive Masked Autoencoder (GC-
MAE). The overview of the proposed GCMAE is depicted in
Figure 3, which consists of two branches: the reconstruction
branch and the contrast branch. Now we introduce GCMAE
following the pipeline of view generation, representation learn-
ing, and model optimization. We also provide the detailed al-
gorithm of GCMAE for graph classification task in Algorithm
1 for your reference.

A. Notations

In this paper, we define g = (V, E ,X) ∈ G as a graph
instance sampled from the graph set G, with a node set V
and an edge set E . We use X ∈ R|V|×d to describe the node
feature matrix, where xi = X[i, :] is the d-dimensional feature
vector of node vi ∈ V . As shown in Figure 3, our GCMAE
contains three distinct modules. Specifically, we define fE as
the GNN encoder to be pre-trained. fD and fP are denoted as
the GNN decoder and projection head, respectively. In graph
pre-training tasks, we first pre-train the backbone model fθ,
and then apply the pre-trained model to the downstream tasks.
We define the representation matrix as H ∈ R|V|×dh , where
each row hi = H[i, :] denotes the feature representation of
node vi, and dh denotes the dimension of the latent space. For
the downstream tasks, our primary focus is centered on node
and graph classification tasks. In graph classification, we can
use Readout(·) function (e.g., average pooling) to summarize
node representations to a graph-level representation.

B. View Generation

Generally, graph masking, which we consider to be a pre-
requisite of both MGM and GCL, masks or corrupts a subset
of low-level elements (e.g., node set V [9], edge set E [12] or
node feature matrix X [8]) in the anchor graph to create its
augmented views for the subsequent reconstruction or contrast.
As a general framework, the graph masking strategy in our
proposed GCMAE is not confined and can be instantiated as
any of the aforementioned ones at different granularities.

Feature View. Inspired by its proven success in prior MGM
studies [8], [31], we adopt the feature masking and tok-
enization technique in the reconstruction branch of GCMAE.
This approach enables the backbone encoder to capture the
information of low-level node features. Specifically, a subset of
nodes Ṽ ⊂ V is randomly sampled from the node set V under
the constraint of a fixed masking ratio ρm (i.e., |Ṽ|= ρm|V|)
For each node vi ∈ Ṽ , we replace its feature with a special
trainable token (i.e., mask token) x[mask] ∈ Rd. Accordingly,
the node vector x̃i for vi ∈ V in the masked feature matrix X̃
can be obtained as:

x̃i =

{
x[mask], vi ∈ Ṽ
xi, vi /∈ Ṽ

. (1)

Without disturbing the original topological structure of the
graph (i.e., keeping the edge set E unchanged), the feature
view is generated:

gm = (V, E , X̃). (2)

And the goal of the reconstruction branch is to recover the
original graph g = (V, E ,X) based on this partially observed
feature view gm.

Node and Edge View. To construct the node view, we adopt
node masking. Specifically, we randomly mask a subset of
nodes Ṽ from the set of node V , under the constraint of a fixed
node masking ratio ρn as well. With the un-masked nodes
V \ Ṽ identified, the edges En between them are preserved to
construct the node view:

gn = (V \ Ṽ, En,Xn). (3)

Analogically, edge view can be generated from the anchor
graph by masking a certain ratio ρe of edges and then
removing isolated nodes:

ge = (Ve, E \ Ẽ ,Xe). (4)

As illustrated in Figure 3, the feature, node, and edge views
comprise elements of varying granularities. This diversity
allows them to serve as complementary sources of information,
enriching the perspective provided to the backbone encoder.
Thereafter, they will be utilized in different self-supervised
tasks — masked node feature reconstruction and multi-view
contrastive learning — to empower the encoder with more
comprehensive global perspectives.

C. Representation Learning and Optimization
Upon acquiring the feature, node, and edge views of each

anchor graph, we feed them into a shared GNN [34], [35] en-
coder fE (i.e., the backbone model to be pre-trained), thereby
producing corresponding representations for the contrast and
reconstruction branches.

1) Reconstruction Branch:

Based on the principle that the feature of each node can be
implicitly inferred by its neighboring nodes in GNNs [36],
we try to reconstruct the masked node features based on the
partially observed feature view gm = (V, E , X̃).



Feature View

Node View

Edge View

Anchor Graph

GNN Encoder GNN Decoder

Reconstructed 
Features

Reconstruction 
Loss

Contrastive 
Loss

Projection Head
Latent Space

Representation

Contrast Branch

Reconstruction BranchView Generation

Fig. 3: Framework of GCMAE. Our framework contains three major components: view generation, reconstruction branch, and
contrast branch. Specifically, given an anchor graph g, we generate diverse views of feature gm, node gn and edge ge. Then
augmented views are fed into a shared graph neural network (GNN) encoder fE being pre-trained. In the reconstruction branch,
the GNN decoder fD learns to reconstruct the masked node features based on the representations of feature view gm provided
by the encoder fE. In the contrast branch, we first obtain the representations of gm, gn, ge through the encoder, and then
use a multilayer perceptron (MLP)-based projection head fP to project these representations to a latent hypersphere space and
conduct contrastive learning. After pre-training, only the encoder fE is kept for the downstream tasks.

Encoding. For a given graph g, the backbone GNN encoder fE
takes in its feature view gm and generates its representations
H ∈ R|V|×dh with a hidden dimension of dh for each node:

H = fE(gm). (5)

Re-mask Decoding. A decoder fD attempts to map the
representations H back to the original feature matrix X. Here
we follow the re-mask decoding technique as in GraphMAE
[8] to force the encoder to learn more condensed represen-
tations. Specifically, we replace the hidden representation of
the masked nodes with another re-mask token h[re-mask] ∈ Rdh

to obtain the re-masked representation H̃, in which vector h̃i

corresponding to node vi is formulated as:

h̃i =

{
h[re-mask], vi ∈ Ṽ
hi, vi /∈ Ṽ

, (6)

where Ṽ is the same subset as in Section III-B. Then, the
decoder fD gives the reconstructed output X′ ∈ R|V|×d as:

X′ = fD(g̃), g̃ = (V, E , H̃). (7)

Reconstruction Loss. To balance the contribution of samples
with different difficulties during training, we use the scaled
cosine error [8] as the reconstruction loss:

lrec(g) =
1

|Ṽ|

∑
vi∈Ṽ

(
1− xT

i x
′
i

∥xi∥·∥x′
i∥

)γ

, (8)

where Ṽ ⊂ V is the set of masked node in graph g, xi

and x′
i are the original and reconstructed features of node vi,

respectively. gamma is a scaling hyperparameter adjusted for
each dataset.

Along with the re-masking decoding, this loss enables the
reconstruction branch to perform masked modeling on each
graph, encouraging the encoder to capture graph information
from the local perspective.

2) Contrast Branch:

We build the contrast branch upon the node view gn, edge
view ge and feature view gm (See Section III-B). Specifically,
we feed these views into the GNN backbone encoder fE and
a graph readout (i.e., pooling) function Readout(·) to obtain



the graph representations:

zn = Readout(fE(gn)),

ze = Readout(fE(ge)),

zm = Readout(fE(gm)).

(9)

Henceforth, we follow the commonly adopted operation of
projecting them into a latent hypersphere space through an
MLP-based projection head fP with l2 normalization:

rn = fP(zn),

re = fP(ze),

rm = fP(zm).

(10)

Contrastive Loss. To maximize the mutual information
among node, edge, and feature views of the same anchor
graph, we introduce multi-view contrast into the Info-NCE
loss [37]. For the node view in this contrast, we not only
consider negative samples from the intra-view but also treat
the feature view that retains the complete graph structure as
negative samples from the inter-view.

lcon(g) = − log
exp

(
rn

Tre/τ1
)

exp (rnTre/τ1) +Nintra +Ninter
(11)

where Nintra and Ninter denotes the distinct contribution of
negative samples within the intra-view and across the inter-
view, respectively:

Nintra =
∑

r−n ∈g′−

exp
(
rn

Tr−n
/
τ1
)
,

Ninter =
∑

zf
−∈g′−

exp
(
rn

Tr−m
/
τ2
), (12)

and τ1 and τ2 are two adaptive hyperparameters, which are set
differently by initial parameters and asynchronously adjusted
during the training process based on the contrastive loss to
selectively regulate the model’s learning granularity for each
graph instance.

It’s worth mentioning that in the node classification task,
intra-view negative sample r−n and inter-view negative sample
r−m is implicitly provided by other views generated in the same
minibatch. As for the graph classification task, negative sam-
ples come from views of other graphs in the same minibatch
with g, where g′

− ∈ G− summarizes the representations of
the node or edge views of the other graphs.

Adap-τ . To achieve adaptive fine-grained temperature control
for each graph instance, we employ the Adap-τ technique from
[38]. This technique allows the contrastive loss to carefully
consider the contribution of negative samples from both intra-
view and inter-view perspectives.

τ∗ = τ0 · exp
(
W

(
max

(
−1

e
,
lcon(g)−m

2β

)))
, (13)

where W(·) stands for the Lambert-W function, m serves as
a threshold to identify hard samples based on their respective
loss, and β is a hyperparameter to regulate the temperature
and avoid gradient vanishing.

Algorithm 1 GCMAE for Graph Classification

1: Initialization: dataset G, GNN encoder fE(·), GNN de-
coder fD(·), projection head fP(·), sampling ratio ρn & ρe,
temperature τ and tradeoff hyperparameter λ.

2: for Sampled minibatch Gb = {gi : i = 1, 2, ..., N} ⊂ G
do

3: for graph instance g = (V, E , X) ∈ Gb do
4: # View Generation
5: Randomly sample nodes Ṽ ⊂ V and edges Ẽ ⊂ E .
6: Feature view gm = (V, E , X̃), X̃

mask←− X ▷ (1)
7: Node view gn = (V \ Ṽ, En, Xn)

8: Edge view ge = (Ve, E \ Ẽ , Xe)

9: # Reconstruction Branch
10: H = fE(gm) ▷ (5)
11: g̃ = (V, E , H̃), H̃

re-mask←− H ▷ (6)
12: X′ = fD(g̃) ▷ (7)

13: lrec(g) =
1

|Ṽ|

∑
vi∈Ṽ

(
1− xT

i x
′
i

∥xi∥·∥x′
i∥

)γ

▷ (8)

14: # Contrast Branch
15: zm = Readout(fE(gm)), ▷ (9)

zn = Readout(fE(gn)), ze = Readout(fE(ge))

16: rm = fP(zm), rn = fP(zn), re = fP(ze) ▷ (10)

17: Nintra =
∑

r−n ∈g′−

exp
(
rn

Tr−n
/
τ1
)
, ▷ (12), (13)

Ninter =
∑

zf
−∈g′−

exp
(
rn

Tr−m
/
τ2
)

18: lcon(g) =

− log
exp

(
rn

Tre/τ1
)

exp (rnTre/τ1) +Nintra +Ninter
▷ (11)

19: end for

20: L =
1

N

∑
g∈Gb

(lrec(g) + λ · lcon(g)) ▷ (14)

21: Update fE, fD, fP to minimize L.
22: end for
23: return GNN encoder fE

The contrast branch receives the node, edge, and feature
views as input, utilizing cross-view and cross-instance con-
trast to capture the global information of the anchor graph,
thereby distinguishing itself from other instances. By endow-
ing the backbone encoder with a holistic and global instance-
discrimination capability, the contrast branch enhances its
performance. Moreover, through the introduction of the feature
view that preserves structure as an inter-view negative sample
in the loss, the contrastive branch has the potential to further
maximize mutual information among multiple views and es-
tablish a tighter connection with the reconstruction branch.



3) Overall Training Objective:

The reconstruction branch captures relevant information by
masking low-level node features, while the contrast branch
captures a graph’s global information distinguishable from
other graphs. Hence, to further unleash the power of GCL on
MGM, we integrate these two branches and define our overall
training objective as a weighted combination of reconstruction
loss (See Eq. 8) and contrastive loss (See Eq. 11):

min
fE,fD,fP

L = Eg∈G [lrec(g) + λ · lcon(g)], (14)

where λ is the hyperparameter controlling the tradeoff be-
tween the reconstruction and Contrastive Loss. By optimizing
this overall optimization objective, we train the encoder to
acquire the ability to capture both local and global information
of the graph input and generate high-quality representations.
After pre-training, the decoder fD and the projection head fP
are discarded, while only the encoder fE equipped with both
local and global perspective is preserved for downstream tasks.

It is worth mentioning that our GCMAE is a model-agnostic
and scalable self-supervised graph learning framework, which
applies to different backbone graph models. The vanilla ver-
sions of the reconstruction and contrast branches described
in this section can be further improved by employing new
variants of the MGM and GCL frameworks as reviewed in
Section II for better local and global information capture.

Conceptually, an ideal pre-trained graph backbone model is
supposed to be able to handle various downstream tasks, which
can be roughly categorized into node-level, link-level (i.e.,
edge-level), or graph-level, with varying levels of granularity
across low-level and graph-level entities. Thus, we argue that
the ability to generate high-quality representations of both
fine-grain (i.e., node- and edge-level) and coarse-grain (i.e.,
graph-level) is a must that comes from the local and global
perspectives of the model, respectively. Convention MGM
and GCL frameworks are confined to a single perspective of
either local or global, which results in suboptimal performance
and restricts their usage across diverse tasks. However, our
proposed hybrid framework, GCMAE tackles this problem by
equipping the pre-trained model with a more comprehensive
perspective and better generalization ability to node-level,
edge-level, and graph-level tasks.

IV. EXPERIMENTS

In this section, extensive experiments are conducted on
datasets of bio-chemistry and social networks, with unsu-
pervised node-level, edge-level and graph-level classification
settings, to demonstrate the effectiveness of GCMAE. Em-
pirical results show that GCMAE, as a general and scalable
self-supervised framework, outperforms existing competitive
graph pre-training baselines and sets the new state-of-the-art
on various benchmark tasks.

A. Node Classification

1) Setup and baselines:

We conduct experiments on 6 benchmark node classification
datasets: Cora, CiteSeer, PubMed [29], Ogbn-arxiv [39], Com-
puter and Reddit, to validate the effectiveness of GCMAE. In
particular, the testing for Reddit follows the inductive setup
in GraphSage [40]. The detailed statistics of datasets are
included in Table I. To make a fair comparison, the same
evaluation protocol and backbone model structure is adopted
as in previous baselines [12], [8]. Specifically, a standard GAT-
based [34] graph encoder is pre-trained with GCMAE, whose
parameters are then frozen to generate the representations of
all nodes. But it should be pointed out that our framework
allows various choices of the encoder architecture, such as
GIN [41], GAT [34] and GraphSage [40], without constraints.
Hereafter, a linear classifier is trained and we report the
mean and variance of accuracy on the test nodes with 10
times of random initialization. GCMAE is then compared
with competitive baselines including both generative (GAE
[42], MaskGAE [12], and GraphMAE [8]) and contrastive
(DGI [43], GMI [44], GRACE [20], GCA [19], MVGRL [14],
BGRL [21] and SUGRL [45]) self-supervised frameworks.

2) Performance of GCMAE.:

The overall results are showcased in Table I, and the following
observations can be obtained:
• MGM surpasses GCL on node-level tasks. Node classifi-

cation is a typical task focusing on low-level elements (i.e.,
nodes), which requires the backbone encoder to be empow-
ered with a local perspective of capturing the information of
substructures. As pointed out in our motivation, compared
with GCL, MGM’s inherent mechanism of graph property
(i.e., node, edge or feature) masking and reconstruction
makes the model pre-trained by it more suitable for node-
level tasks. Table I shows that MGM-based frameworks
(e.g., MaskGAE and GraphMAE) achieve better perfor-
mance than GCL-based ones (e.g., DGI, GMI, GRACE,
GCA, MVGRL, BGRL and SUGRL), which empirically
verifies aforementioned statement.

• GCMAE outperforms existing self-supervised baselines.
The reconstruction branch in GCMAE equipped the back-
bone encoder with a local perspective as other MGM
schemes and its low-level representative ability is further
enhanced as the contrast branch cooperates and provides
supplementary holistic information. Thus, GCMAE achieves
the best performance on 4 out of 6 datasets and 2 second best
compared with leading self-supervised generative and con-
trastive schemes. Meanwhile, as a self-supervised scheme,
it outperforms models trained in supervised manners on
4 datasets and achieves comparable results on the oth-
ers, demonstrating its promising performance of generating
high-quality node-level representations.

B. Graph Classification
1) Setup and baselines:

Furthermore, we follow the settings in InfoGraph [46] to
evaluate GCMAE in the unsupervised graph-level represen-
tation learning, which contains 6 benchmark datasets from



TABLE I: Experiment results in unsupervised representation learning for node classification. Test accuracies (%) on multiple
academic and social network datasets. Statistics are from their original papers. Boldface and underline indicate the best and
the second best performance on each dataset, respectively.

Dataset Cora CiteSeer PubMed Obgn-arxiv Computer Reddit

Statistics
#Nodes 2,708 3,327 19,717 169,343 13,752 232,965
#Edges 10,556 9,104 88,648 2,315,598 491,722 11,606,919
#Features 1,433 3,703 500 128 767 602
#Classes 7 6 3 40 10 41

Supervised
GCN1 81.5 ±0.2 70.3 ±0.4 79.0 ±0.5 71.74±0.29 86.51±0.54 95.3 ±0.1

GAT1 83.0 ±0.7 72.5 ±0.7 79.0 ±0.3 72.10±0.13 86.93±0.29 96.0 ±0.1

Unsupervised

GAE 71.5 ±0.4 65.8 ±0.4 72.1 ±0.5 63.60±0.50 86.66±0.07 -
DGI 82.3 ±0.6 71.8 ±0.7 76.8 ±0.6 65.10±0.40 83.95±0.47 94.0 ±0.1

GMI1 83.00±0.30 72.4 ±0.1 79.9 ±0.2 68.20±0.20 82.21±0.31 94.9 ±0.02

GRACE1 81.90±0.40 71.20±0.50 80.60±0.40 68.70±0.40 86.25±0.25 94.2 ±0.0

GCA1 81.80±0.20 71.90±0.40 81.00±0.30 68.20±0.20 87.85±0.31 -
MVGRL1 82.90±0.30 72.60±0.40 80.10±0.70 68.10±0.10 86.90±0.10 -
BGRL1 82.86±0.49 71.41±0.92 82.05±0.85 71.64±0.12 90.34±0.19 94.22±0.03

SUGRL 83.40±0.50 73.00±0.40 81.90±0.30 69.30±0.20 88.90±0.20 -
MaskGAE 84.05±0.18 73.49±0.59 83.06±0.22 70.73±0.26 89.51±0.08 -
GraphMAE 84.2 ±0.4 73.4 ±0.4 81.1 ±0.4 71.75±0.17 - 96.01±0.08

GraphMAE2 84.5 ±0.6 73.4 ±0.3 81.4 ±0.5 - - -
GCMAE 85.13±0.67 73.60±0.44 83.21±0.54 72.08±0.23 89.58±0.20 95.91±0.10

1 The reported results are partly from MaskGAE [12].

[30]: NCI1, PROTEINS, MUTAG, COLLAB, REDDIT-B and
IMDB-B, covering both biochemical and social network do-
main. A GIN-based [41] is pre-trained with GCMAE and the
encoded graph representations are then fed into a non-linear
SVM classifier to evaluate the discriminative quality of those
representations. We compare GCMAE with previous self-
supervised learning baselines: untrained GIN [41], InfoGraph
[46], GraphCL [1], JOAO [32], AD-GCL [16], RGCL [17] and
GraphMAE [8]. The summaries of datasets and test accuracies
over 10 random initializations are reported in Table II.

2) Performance of GCMAE:

Table II showcases the performance of GCMAE and other
baselines, and we get the following observations:

• GCL outperforms MGM on graph-level tasks. In contrast
to node-level tasks requiring the local perspective, the global
perspective of encoding discriminative semantic information

is crucial for the classification of graph-level tasks. The
variants of GCL (e.g., InfoGraph [46], GraphCL [1], JOAO
[32], AD-GCL [16] and RGCL [17]), with the shared goal
of instance-discrimination while ignoring the fine-grained
representations of node, edge or features, are empowered
with this global perspective, making it more suitable than
the MGM frameworks (e.g., GraphMAE [8]) for graph-level
tasks. This observation is consistent with our motivations
to leverage GCL in MGM to provide an additional global
perspective and the capability of graph-level discrimination.

• GCMAE outperforms existing self-supervised baselines.
The contrast branch in GCMAE enables the backbone
encoder to generate instance-discriminative graph represen-
tations (i.e., global perspective). Meanwhile, node repre-
sentation is the foundation of that of a graph, because the
graph-level representation of a graph instance is transformed
from its node-level representation by a pooling layer. So the



TABLE II: Experiment results in unsupervised representation learning for graph classification. Test accuracies (%) on multiple
biochemical and social network datasets. Statistics are from their original papers except GraphMAE. Boldface and underline
indicate the best and the second best performance on each dataset, respectively.

Dataset NCI1 PROTEINS MUTAG COLLAB REDDIT-B IMDB-B Avg. Gain

#Graphs 4,110 1,113 188 5,000 2,000 1,000
#Avg. Nodes 29.87 39.06 17.93 74.49 429.63 19.77
#Avg. Edges 32.30 72.82 19.79 2457.78 497.75 96.53

No Pre-Train 65.40±0.17 72.73±0.51 87.39±1.09 65.29±0.16 76.86±0.25 69.37±0.37 72.84 -
graph2vec 73.22±1.81 73.30±2.05 83.15±9.25 - 75.28±1.03 71.10±0.54 - -
InfoGraph 76.20±1.06 74.44±0.31 89.01±1.13 70.05±1.13 82.50±1.42 73.03±0.87 77.54 4.70
GraphCL 77.87±0.41 74.39±0.45 86.80±1.34 71.36±1.15 89.53±0.74 71.14±0.44 78.52 5.68
JOAO 78.36±0.53 74.07±1.10 87.67±0.79 69.33±0.34 86.42±1.45 70.83±0.25 77.78 4.94
AD-GCL 75.86±0.62 75.04±0.48 88.62±1.27 74.89±0.90 92.35±0.42 71.49±0.98 79.71 6.87
RGCL 78.14±1.08 75.03±0.43 87.66±1.01 70.92±0.65 90.34±0.58 71.85±0.84 78.99 6.15
GraphMAE1 76.12±1.45 74.69±0.74 87.21±0.88 73.16±2.48 87.76±1.08 71.61±0.52 75.33 5.18

GCMAE 78.56±1.35 76.84±0.93 88.24±1.01 76.97±1.13 88.25±1.12 74.59±0.81 80.56 7.72

1 GraphMAE is reproduced since its evaluation metrics are different from the other baselines.

reconstruction branch implicitly enhanced the pre-trained
model on graph-level tasks by improving its node-level
representative ability. This is empirically verified in Table
II, where GCMAE achieves the best performance on 4 out
of 6 datasets compared with existing MGM- and GCL-
based schemes, reaches the highest average test accuracy
of 77.03% and shows its potential as a general and scalable
graph pre-training framework.

C. Transfer Learning

1) Setup and baselines:

Following the commonly adopted transfer learning settings and
evaluation metrics in [2], the backbone model is pre-trained
on a large label-free dataset – ZINC-2M [47] which includes
2 million unlabeled molecules sampled from the ZINC15 and
fine-tuned on 8 downstream datasets with graph-level classifi-
cation tasks in MoleculeNet [48] to evaluate the transferability
of schemes. The detailed statistics of datasets are in Table
IV and the downstream datasets are split by scaffold-split to
mimic real-world use cases GCMAE is compared with com-
petitive graph pre-training baselines, including Infomax [43],
EdgePred [49], AttrMasking [2], ContextPred [2], GraphCL
[1], GraphLoG [50], AD-GCL [16], JOAO [32], RGCL [17]
and GraphMAE [8]. To make a fair comparison, the same

evaluation protocol and backbone model structure are adopted
as in previous baselines [8]. Specifically, a standard GIN-
based [41] graph encoder is pre-trained with GCMAE, whose
parameters are then frozen to generate the representations of
all nodes. But it should be pointed out that our framework
allows various choices of the encoder architecture, such as
GIN [41], GAT [34] and GraphSage [40], without constraints.
The ROC-AUC scores over 10 random initializations are
reported in Table III

2) Performance of GCMAE:

Table III showcases the performance of GCMAE and other
baselines. GCMAE achieves the best performance on 3 out
of 8 datasets and the highest average gain compared with
existing MGM- and GCL-based schemes. The performance
of GCMAE on molecular property prediction in chemistry
and protein function prediction in biology, which pre-trains
and finetunes the model in different datasets shows the trans-
ferability of the proposed pre-training scheme. Compared to
MGM-based schemes GraphMAE [8], GCMAE’s performance
demonstrates a notable improvement in the generalization and
transferability of MGM with multi-view contrast in graph
representation learning which allows the pre-trained model to
capture discriminative features in downstream datasets.



TABLE III: Experiment results in transfer learning on downstream graph classification tasks. ROC-AUC scores (%) on molecular
property prediction benchmarks. Statistics are from their original papers. Boldface and underline indicate the best and the second
best performance on each dataset, respectively.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE AVG. GAIN

No Pre-Train 65.8 ±4.5 74.0 ±0.8 63.4 ±0.6 57.3 ±1.6 58.0 ±4.4 71.8 ±2.5 75.3 ±1.9 70.1 ±5.4 67.0 -
Infomax 68.8 ±0.8 75.3 ±0.5 62.7 ±0.4 58.4 ±0.8 69.9 ±3.0 75.3 ±2.5 76.0 ±0.7 75.9 ±1.6 70.3 3.3
EdgePred 67.3 ±2.4 76.0 ±0.6 64.1 ±0.6 60.4 ±0.7 64.1 ±3.7 74.1 ±2.1 76.3 ±1.0 79.6 ±1.2 70.3 3.3
AttrMasking 64.3 ±2.8 76.7 ±0.4 64.2 ±0.5 61.0 ±0.7 71.8 ±4.1 74.7 ±1.4 77.2 ±1.1 79.3 ±1.6 71.1 4.1
ContextPred 68.0 ±2.0 75.7 ±0.7 63.9 ±0.6 60.9 ±0.6 65.9 ±3.8 75.8 ±1.7 77.3 ±1.0 79.6 ±1.2 70.9 3.9
GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44 70.77 3.77
GraphLoG 72.5 ±0.8 75.7 ±0.5 63.5 ±0.7 61.2 ±1.1 76.7 ±3.3 76.0 ±1.1 77.8 ±0.8 83.5 ±1.2 73.4 6.4
AD-GCL 70.01±1.07 76.54±0.82 63.07±0.72 63.28±0.79 79.78±3.52 72.30±1.61 78.28±0.97 78.51±0.80 72.72 5.72
JOAO 70.22±0.98 74.98±0.29 62.94±0.48 59.97±0.79 81.32±2.49 71.66±1.43 76.73±1.23 77.34±0.48 71.90 4.9
RGCL 71.42±0.66 75.20±0.34 63.33±0.17 61.38±0.61 83.38±0.91 76.66±0.99 77.90±0.80 76.03±0.77 73.16 6.16
GraphMAE 72.0 ±0.6 75.5 ±0.6 64.1 ±0.3 60.3 ±1.1 82.3 ±1.2 76.3 ±2.4 77.2 ±1.0 83.1 ±0.9 73.8 6.8

GCMAE 72.11±0.85 77.24±0.35 65.22±0.26 61.40±1.75 80.76±1.40 77.79±1.34 78.32±0.51 81.44±0.87 74.29 7.29

TABLE IV: Statistics for ZINC and MoleculeNet.

Datasets Graphs# Avg. N# Avg. E#

ZINC-2M 2,000,000 26.62 57.72

BBBP 2,039 24.06 51.90
Tox21 7,831 18.57 38.58

ToxCast 8,576 18.78 38.52
SIDER 1,427 33.64 70.71
ClinTox 1,477 26.15 55.76
MUV 93,087 24.23 52.55
HIV 41,127 25.51 54.93

BACE 1,513 34.08 73.71

D. Link Prediction

1) Setup and baselines:

We further evaluate the performance of GCMAE on link
prediction tasks, which is a typical downstream task in graph
representation learning. Following the settings in [12], we
conduct experiments on 3 benchmark datasets: Cora, CiteSeer,
PubMed, removing 5% of edges for the validation set and 10%
for the test. The detailed statistics of datasets can be found in
Table I. We compare GCMAE with competitive graph pre-
training baselines, including GAE [42], VGAE [42], ARGA
[51], ARVGA [51], SAGE [40], MGAE [10], GraphMAE [8]

and MaskGAE [12]. The AUC and average precision (AP)
scores over 10 random initializations are reported in Table V.

2) Performance of GCMAE:

Table V showcases the performance of GCMAE and other
baselines. The performance of GCMAE on link prediction
achieves a notable performance over the compared baselines
on both 2 metrics. Specifically, GCMAE achieves the best
performance on 5 out of 6 evaluations, which demonstrates the
effectiveness of GCMAE on link prediction tasks. The result
demonstrates that the graph reconstruction capability from the
MGM benefits from the GCL, which helps the self-supervised
learning of GCMAE on link prediction.

E. Hyperparameter Sensitivity

To gain insight into the impact of reconstruction and
contrast branches on model performance and validate the
effectiveness of our framework design, we conduct a series
of experiments on the hyperparameter sensitivity.

Component analysis. As shown in Table I and Table II, on
both node and graph classification tasks, GCMAE outperforms
the variants of pure MGM and GCL schemes, demonstrating
the effectiveness of our combination design of reconstruction
and contrast branches. Further, we evaluate its sensitivity to the
trade-off parameter λ in Equation (14) on 3 node classification
datasets (Cora, CiteSeer, PubMed [29]) and 4 graph classifica-
tion datasets [30]: (NCI1, PROTEINS, MUTAG, COLLAB).
Moreover, we do the analysis of the components based on the
average ROC-AUC value for transfer learning experiments on
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Fig. 4: Impact of the trade-off parameter λ. The upper left (blue), the upper right (red) and the lower (purple) column show the
sensitivity of the model performance to the trade-off parameter λ on 3 node classification datasets, transfer learning downstream
tasks average and 4 graph classification datasets, respectively.

downstream tasks. In Figure 4, we show the change of model
performance w.r.t. to λ. Affected by the different training loss
function scales, on the magnitude of 10−2, we observe that
the model reaches the pike performance when λ is around
0.01, on all curves of node classification datasets and 2 graph
classification tasks (NCI1, COLLAB) and reaches the pike
when λ is around 0.005 on the other 2 datasets. And when λ
is larger than the pike point, the model performance markedly
deteriorates across all datasets of varying scales, indicating
that despite the enhancements brought about by divergent
perspectives at different granularities, merely comparing two
distinct views is insufficient for learning. This aligns with the
observations made in MVGRL [14]. Nevertheless, concerning
transfer learning, when λ exceeds the peak, the model’s per-
formance in downstream tasks does not significantly diminish,
underscoring the ability of contrastive learning to effectively
ensure the quality of graph representations learned in trans-
fer learning, thereby corroborating our standpoint. When the
feature reconstruction loss dominates (i.e., λ approaches 0),
GCMAE simply degenerates into vanilla MGM disregarding
global information and shows comparable performance with
GraphMAE [8]. It can be further corroborated by the slight
variation in the model performance between node classification
and graph classification tasks: as the model loses its capability
of instance discriminating due to the absence of multi-view

contrast, its performance on graph classification tasks under-
goes a more pronounced decline.

Mask ratio analysis. We also analyze the effect of mask ratio
ρn, ρe on model performance on node classification and graph
classification datasets: Cora, CiteSeer, MUTAG and Proteins,
as Figure 5 shows. A low mask ratio of node/feature (i.e.,
ρn) harms the model performance, mainly because the feature
reconstruction task under a low mask ratio is too simple for
encoders to learn high-quality and robust node representations,
which is consistent with [8]. Meanwhile, when the mask
ratio increases above 0.5, the model performance decreases
as well. Intuitively, when the majority of nodes are masked
out, the encoder-decoder lacks adequate local information to
infer neighboring nodes and the graph contrast is also difficult
to discriminate due to the constraints of global information.
It’s worth mentioning that compared with the nodes/feature
mask ratio, the edge mask ratio is generally lower due to the
relatively fluctuating effect of edge masks on the structure of
views. In all 4 datasets, an excessively high or low mask ratio
of either node view or edge view significantly reduces the
model performance. The reduction of the model performance
caused by the higher mask ratio of node and feature view
is significantly larger in the 2 graph classification datasets
than in the node classification tasks which indicates that an
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Fig. 5: Impact of mask ratio ρn and ρe. The effect of mask ratio of node/feature ρn and edge ρe on model performance on
2 node classification datasets and 2 graph classification datasets. Each figure shows the variation of model performance w.r.t.
ρn, for three different values of ρe.

TABLE V: Experiment results in link prediction. AUC and average precision (AP) scores (%) on multiple citation networks
datasets. Boldface and underline indicate the best and the second best performance on each dataset, respectively.

Dataset Cora CiteSeer PubMed
AUC AP AUC AP AUC AP

GAE1 91.09±0.01 92.83±0.03 90.52±0.04 91.68±0.05 96.40±0.01 96.50±0.02

VGAE1 91.40±0.01 92.60±0.01 90.80±0.02 92.00±0.02 94.40±0.02 94.70±0.02

ARGA1 92.40±0.00 93.23±0.00 91.94±0.00 93.03±0.00 96.81±0.00 97.11±0.00

ARVGA1 92.40±0.00 92.60±0.00 92.40±0.00 93.00±0.00 96.50±0.00 96.80±0.00

SAGE1 86.33±1.06 88.24±0.87 85.65±2.56 87.90±2.54 89.22±0.87 89.44±0.82

MGAE1 95.05±0.76 94.50±0.86 94.85±0.49 94.68±0.34 98.45±0.03 98.22±0.05

GraphMAE 87.62±0.88 89.30±0.76 86.90±1.20 88.90±1.10 90.80±0.70 91.00±0.70

MaskGAE1 96.66±0.17 96.29±0.23 97.95±0.10 98.12±0.10 99.06±0.05 98.99±0.06

GCMAE 96.85±0.34 97.04±0.56 98.52±0.35 99.02±0.19 99.04±0.74 99.12±0.48

1 The reported results are partly from MaskGAE [12].

excessively high node and feature mask imposes a pronounced
constraint on the discrimination of global information. This
result shows that in the MGM framework enhanced by GCL,
the masking of low-level elements in the graph plays a crucial
role, thus we suggest tuning ρn and ρe carefully.

V. CONCLUSION

In this work, we introduce a novel graph self-supervised
learning framework, Graph Contrastive Masked Autoencoder
(GCMAE), which aims to enhance Masked Graph Modeling
(MGM) with Graph Contrastive Learning (GCL) from a multi-
view perspective. In GCMAE, diverse views at the differ-
ent granularity of node, edge and feature are generated for
reconstruction and contrast branches. Extensive experiments
on node classification, graph classification tasks and transfer

learning on downstream tasks show that GCMAE significantly
improves the representative and generalization ability of the
pre-trained model. In the future, we plan to extend GCMAE
to more tasks such as transfer learning to verify its capability
of representation learning, and to replace the backbone model
with novel architectures such as Graphormer [52] or Graph-
Trans [53] to further tap the potential of MGM and GCL and
establish a more general graph pre-training scheme.
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