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Designing effective prompts can empower LLMs to understand user preferences and provide recommendations
with intent comprehension and knowledge utilization capabilities. Nevertheless, recent studies predominantly
concentrate on task-wise prompting, developing fixed prompt templates shared across all users in a given
recommendation task (e.g., rating or ranking). Although convenient, task-wise prompting overlooks individual
user differences, leading to inaccurate analysis of user interests. In this work, we introduce the concept of
instance-wise prompting, aiming at personalizing discrete prompts for individual users. Toward this end, we
propose Reinforced Prompt Personalization (RPP) to realize it automatically. To improve efficiency and quality,
RPP personalizes prompts at the sentence level rather than searching in the vast vocabulary word-by-word.
Specifically, RPP breaks down the prompt into four patterns, tailoring patterns based on multi-agent and
combining them. Then the personalized prompts interact with LLMs (environment) iteratively, to boost LLMs’
recommending performance (reward). In addition to RPP, to improve the scalability of action space, our proposal
of RPP+ dynamically refines the selected actions with LLMs throughout the iterative process. Extensive
experiments on various datasets demonstrate the superiority of RPP/RPP+ over traditional recommender
models, few-shot methods, and other prompt-based methods, underscoring the significance of instance-wise
prompting in LLMs for recommendation. Our code is available at https://github.com/maowenyu-11/RPP.
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1 Introduction
Recommender Systems (RSs) are widely applied in real life to offer personalized item recom-
mendations that align with user preference. Recently, Large Language Models (LLMs), such as
ChatGPT, GPT4, PaLM-E, and LLaMA, have demonstrated exceptional capabilities in semantic un-
derstanding, intent reasoning, and knowledge utilization [64]. These advancements empower LLMs
to address recommendation tasks by modeling users’ behavior into natural language, attracting
considerable attention [7, 11, 24].

To unleash the recommendation capabilities of LLMs, a promising solution lies in tailoring
prompts for the specific recommendation task [11, 62], beyond fine-tuning the massive parameters
[1] that can be resource-hungry. Existing methods [10, 16, 60] have investigated the task-wise
prompting, dedicated to establishing fixed prompt templates shared across all users. To summarize,
most of these task-wise prompts for recommendation tasks include the following patterns:

—Role-playing assigns a specific role for LLMs to play [21, 65] in the recommendation tasks,
enabling LLMs to respond with domain knowledge aligned to that role.

—History records provides the history interaction sequence of the target user, which the LLMs
can utilize as in-context information for subsequent recommendations [16, 25].

—Reasoning guidance guides LLMs with essential steps in the reasoning process to make rec-
ommendations, incorporating strategies such as Chain-of-Thought (CoT) [16, 56].

—Output format defines the desired format of the LLMs’ output in the specific tasks, such as the
scores for rating prediction [11] and order numbers for ranking tasks [16].

However, we argue that applying fixed task-wise prompts for all users [20] may fail to fully
explore the capability of LLMs to provide personalized recommendations. First, users’ varied
intentions pose challenges for the one-fitting-all prompting to analyze dynamically, which may
result in mediocre recommendation performance. Take Figure 1 as an example, the first user’s
preference for the science fiction film “The Fly” is reflected in the watching history of 10 movies
from 2 weeks ago. In contrast, the second user’s preference for the comedy film “Pink Flamingos” is
evident in the watching history of the recent two films. Thus, task-wise prompts, such as instructing
LLMs to recommend based on a fixed length of users’ watching history may neglect users’ dynamic
preferences. Secondly, the performance of LLMs is sensitive to the expression of prompts [34].
Fixed prompt templates sacrifice the benefits that varying expressions of prompts can bring to the
output of LLMs. Therefore, we propose personalizing instance-wise prompts for different users in
the recommendation tasks.

While conceptually appealing, personalizing the discrete prompts for individual users is chal-
lenging. On the one hand, the methods of manual creation [2] or heuristical crafting [19]) are
labor-intensive and resource-expensive to tailor prompts for each user. On the other hand, meth-
ods based on supervised learning [32, 44] are unreliable due to the absence of labels for optimal
prompts. To bridge this gap, we propose personalizing prompts automatically withReinforcement
Learning (RL), drawing inspiration from recent advances in optimizing prompts for Natural
Language Processing (NLP) tasks [5, 63]. The advantage of RL [54] lies in its ability to learn
autonomously through interactions with the environment, rather than depending on manual effort
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Fig. 1. Comparison between task-wise prompting and instance-wise prompting for recommendation. The
ground truth for candidate movies that the users will watch next is marked in red. The personalized parts in
prompts for different users are highlighted with yellow .

or labeled data. However, existing works which optimize prompts with RL in NLP tasks either
search for tokens within an extensive vocabulary [5] or conduct basic editing operations [63] on
the prompts, which are constrained by computational resource limitations and the reliability of the
generated prompts. To apply RL for personalizing instance-wise prompts in the recommendation
tasks, two fundamental problems are crucial.

—How to reduce the search space to enhance efficiency?
—How to ensure the quality of the personalized prompts?

To tackle these problems, we introduce Reinforced Prompt Personalization (RPP) to per-
sonalize high-quality prompts for each user efficiently. Instead of searching word-by-word in the
extensive vocabulary [5], we limit the search space by exploring the various expressions of the four
patterns at the sentence level, i.e., {role-playing, history records, reasoning guidance, output format }.
We view the prompt optimization process as a combinatorial optimization problem with limited
search space [23, 27–29]. To ensure prompt quality, we meticulously design the diverse expressions
of each pattern based on the nature of recommendation tasks, which can guide LLMs to understand
users’ intent and make recommendations from multiple perspectives. We specify these high-quality
expressions as actions, in contrast to simply treating different editing operations (such as “add” or
“delete”) as the actions [63]. The personalized prompts interact with LLMs which function as the
environment, to maximize LLMs’ recommending performance which serves as the reward. Specifi-
cally, to select sentences (actions) for the four patterns with specific expertise respectively, RPP is
designed based on Multi-Agent RL (MARL) under Centralized Training with Decentralized
Execution (CTDE) paradigm [33]. Under CTDE, each agent has an individual policy network
based on Advantage Actor-Critic [39] algorithm, as personalizing each specific prompt pattern
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requires distinct expertise. This global state contains information about the personalized prompts
and the ranking results generated by LLMs in the current round. The action space is carefully
designed with each action collected through collaborative deliberation between human experts
and LLMs. Moreover, to improve the flexibility and quality of the action space, we dynamically
refine the selected actions with LLMs during the iterative process to enhance scalability, referred
to as RPP+.

We assess the effectiveness of our approach in ranking tasks across three widely used public
datasets (i.e., MovieLens-1M (ML-1M) [12], Games [38], and Lastfm [3]). Experimental results
demonstrate that RPP/RPP+ can significantly improve the recommendation performance of LLMs,
outperforming several traditional recommender models (e.g., BPRMF [42], LightGCN [13], SASRec
[22]), few-shot methods (e.g., VQ-Rec [14], UniSRec [15]), and other prompt-based methods (e.g.,
manual prompts [16], enumeration, and GRIPS [41]). This highlights the significance of tailoring
prompts for each individual user and the superiority of RPP/RPP+ in enhancing the recommendation
ability of LLMs. Our key contributions are as follows:

—We propose RPP/RPP+, a general prompt optimization framework to tailor instance-wise
prompts for individual users.

—Our methodology generates personalized prompts at the sentence level with MARL, achieving
the balance between search efficiency and prompt quality.

—Extensive experiments on three benchmark datasets demonstrate the superiority of RPP/RPP+,
highlighting the necessity of personalizing instance-wise prompts.

2 Preliminaries
Here, we introduce task-wise prompting and instance-wise prompting in the recommendation
tasks.

2.1 Task-Wise Prompting
Most LLM-based RSs frame recommendation as a language modeling task [4, 10, 53], with a fixed
prompt template shared across all users in a task. The fixed task-wise prompts typically consist of
four patterns, including “role-playing,” “history records,” “reasoning guidance,” and “output format,”
as exemplified as follows:

Task-Wise Prompt Example

Role-Playing:
You are a movie expert.
History Records:
I’ve watched these movies <SeqH1> recently.
Reasoning Guidance:
Please rank these candidate movies <SeqH2> after inferring my preference from my
watching history.
Output Format :
Please only output the ranking results with order numbers. Do not explain the reason or
include any other words.

Here, <SeqH1> and <SeqH2> are the lists of movie titles from the watching history and candidate
movies, respectively. Each sentence in the prompt template corresponding to a fixed pattern
that remains unchanged regardless of the difference of users. The one-size-fits-all approach lacks

ACM Transactions on Information Systems, Vol. 43, No. 3, Article 72. Publication date: March 2025.



Reinforced Prompt Personalization for Recommendation with LLMs 72:5

the flexibility to adapt the prompt to catch individual users’ preferences, leading to inaccurate
recommendation results.

2.2 Instance-Wise Prompting
To match the need for personalization, going beyond task-wise prompting, we introduce instance-
wise prompting for recommendation, which tailors prompts for each user instance to elicit high-
quality recommendations. Formally, for a user u, we take his/her historical interactions H =

{8: }=:=1 paired with the candidate items C = {8 9 }<9=1 as the input x. Then, the objective of prompt
personalization can be formulated as

?∗ = argmax?∈PR(~!" (?, G)), (1)

where P is the space of possible prompts. The LLM observes x embedded in the prompt to yield
recommendation results ~!" , reflecting the user preference on candidate items. The function
R(·) quantifies the alignment between the predicted results and ground truth, with higher values
indicating greater alignment. Thus, the task becomes identifying ?∗, the optimal prompt that
maximizes alignment for each individual user.

3 Methodology
To enhance LLMs’ recommendation capability with effective prompts, we introduce RPP/RPP+
to personalize instance-wise prompts with MARL, where RPP+ enhances RPP by incorporating
a “refine” block. Comprising four actor-critic networks, the MARL serves as the core component
to select actions from the four patterns and create personalized instance-wise prompts for dif-
ferent users. These optimized prompts are then used to prompt an LLM-based recommender for
recommendations, while the MARL is trained iteratively to maximize rewards from the outputs of
LLM, as shown in Figure 2. In this section, we begin by formulating prompt personalization as a
Markov Decision Process (MDP), followed by a detailed description of RPP/RPP+’s components,
including the action space, state space, reward function, and policy architecture.

3.1 Formulation of RL for Prompt Personalization
Manual creation or heuristical crafting may fail to personalize discrete prompts automatically and
efficiently. Building upon the idea of using RL for prompt personalization, we view the prompt
generation as selecting actions from natural language space and formulate the problem as a MDP
〈S,A,) , ',W〉 to optimize prompts in an instance manner, wherein,

—S is the state set, where s ∈ S indicates the state containing information about the current
prompt and recommendation result.

—A is the action set, where each action 0 ∈ A corresponds to a sentence selected from a
specific pattern (e.g., “You are a movie expert” for “role-playing”).

—T is the transition function, where C (sC+1 |sC , 0C ) is the transition possibility that action 0C in
state sC at time t will lead to state sC+1 at time C + 1. In our task, C (sC+1 |sC , 0C ) represents the
possibility of LLMs’ recommendation results at the C + 1 iteration.

—R is the reward function, A (sC , 0C ) determines the reward A ∈ ' for agent after interacting
with the LLMs. To integrate with recommendation tasks, we define the reward r as the
recommendation performance evaluated according to LLMs’ answers.

—W is the discount factor that controls the agent’s emphasis on future rewards compared to
immediate rewards.

For a user u, we initialize prompt ?0 with sentences randomly selected from K patterns (i.e.,
role-playing, history records, reasoning guidance, and output format). As depicted in Figure 2, we
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Fig. 2. The framework of our proposed RPP/RPP+. MARL serves as the core component to personalize
instance-wise prompts with four distinct patterns, using corresponding agents. It is trained iteratively to
maximize rewards based on the outputs of the frozen LLM-based recommender. Once trained, MARL can
select optimal actions from four patterns to generate personalized prompts for each user based on their data,
effectively prompting the LLM-based recommender for tailored recommendations. In addition to RPP, the
“Refine” block is designed for RPP+ to enhance the flexibility and quality of the selected actions, utilizing
other LLMs to dynamically refine the selected actions before prompting the LLM-based recommender.

employ a MARL under the CTDE paradigm [33]. Each agent I: is responsible for personalizing
a specific pattern with individual action space A: , where : ∈ {1, 2, ...,  }, K is the number of
agents (or patterns). Prompt personalization can be formulated as seeking policies c: (0 (: )C |sC )
that selects actions 0 (: )C from the action set A: based on the global state sC , generating a prompt
?C = 2>=20C (0 (1)C , . . . , 0

( )
C ) at step t. The generated prompt ?C interacts with LLMs (environments)

to enhance LLMs’ recommendation performance (reward) by maximizing the objective of our
multi-agent. Formally, the objective can be defined as

&

(
sC , {0 (: )C } 

:=1

)
= E sC ′∼S

{0 (: )
C ′ ∼c: } :=1

[ ∞∑
C ′=C

WC
′−C · A

(
sC ′ , {0 (: )C ′ } 

:=1

)]
,

max
{c: } :=1

J
(
{c: } :=1

)
= E sC∼S

{0 (: )C ∼c: } :=1

[
& (sC , {0 (: )C } 

:=1)
]
, (2)

where &
(
sC , {0 (: )C } 

:=1

)
denotes the expected cumulative reward for MARL at step t which can be

estimated by Q-value function. By optimizing the policies c: and maximizing the objective J , we
can obtain the optimal prompt ?C for each user during iterations.

3.2 Action Space
Designing an effective action set is crucial when optimizing prompts with RL. The key challenge is
balancing search efficiency and prompt quality. To manage this tradeoff, we develop the action space
comprising several subspaces {A: } :=1, each representing a distinct pattern and equipped with
multiple sentences as actions. Inspired by previous studies [16, 46, 62] that have investigated task-
wise prompts utilizing role-playing, history records, reasoning guidance, and output format patterns,
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we explore personalizing instance-wise prompts by optimizing these four patterns. To improve
searching efficiency, we optimize each pattern by selecting actions (sentences) from {A: } :=1, as
depicted in Figure 2. The sentence-level optimization for these four patterns enhances the efficiency
of RPP/RPP+, rather than optimizing word-by-word within the vast vocabulary. Moving to the goal
of ensuring prompt quality, each pattern A: consists of multiple sentences meticulously designed
for the recommendation tasks, free from ambiguous words, and encompassing diverse perspectives
for LLMs to analyze. These sentences represent the possible actions in action space A: for the
corresponding agent I: .

For implementation, the action set is jointly established by both humans and LLMs for specific
tasks, such as movie ranking tasks. Each action is meticulously crafted by the LLMs and rigorously
screened by humans to ensure its task relevance and encompass diverse analytical perspectives,
thereby guaranteeing prompt quality. Moreover, to enhance the flexibility of personalized prompts,
we leverage LLMs to refine the actions selected at each iteration, enabling a more adaptable
expression for the generated prompts. And we name it as RPP+. Below we explain the design of
the action subset for each pattern in detail.

Role-Playing. This pattern assigns a specific role to LLMs [46, 47] to generate responses that are
consistent with a particular profession. For instance, embodying the role of LLM as a movie
expert allows LLMs to leverage their extensive knowledge about the movie domain. In the context
of recommendation, the actions of the “role-playing” pattern include: (1) Positioning the LLM
as an expert to leverage the domain knowledge (e.g., “You are a movie expert”); (2) enhancing
recommendation capabilities of LLM by assigning them as a recommender (e.g., “You are good at
recommending movies”); (3) instructing LLM to discern users’ inner intents, akin to a psychologist’s
role, such as “You are good at catching people’s movie interest.”

History Records. The user’s historical interactions constitute critical contextual information for
eliciting high-quality recommendation [16, 30]. Intuitively, certain users exhibit short-term interests
best captured by recent interactions, while others having long-term preferences require a longer
interaction history. Therefore, we personalize history records by varying the interaction sequence
length to match users’ dynamic preferences. Specifically, with an initial length ;0, at each step t, the
agent’s action is deciding the number of additional interactions ;̂C to introduce in chronological
order, that is, providing ;C = ;C−1 + ;̂C historical context from near to far in time. By formulating the
sequence expansion as action, the agent can learn an adaptive policy to tail each user’s sequence to
the short versus long-term interests.

Reasoning Guidance. This pattern offers guidelines for LLMs to systematically decompose complex
tasks into multiple reasoning steps, incorporating strategies such as CoT [56], reflexion [49], and
refinement [35]. Since recommendation lies in inferring user intentions based on their behaviors, it
is crucial to introduce intermediate steps to move from the surface to the essence. We include six
action sub-categories within the “reasoning guidance” pattern: (1) direct recommendation without
intermediate steps (e.g., “Please rank these candidate movies in order of priority from highest to
lowest”); (2) explicitly instructing LLM to recommend based on the user’s interaction history (e.g.,
“Please rank these candidate movies according to my watching history”); (3) prompting LLM to
infer user preference before suggesting items (e.g., “Please rank these candidate movies based
on my movie preferences which are inferred from my watching history”); (4) allowing LLM to
deduce without specific instructions (e.g., “Please rank these candidate movies and think step by
step”); (5) utilizing the refinement and update mechanism of LLMs in the process of generating
recommendation results (e.g., “Please rank these candidate movies and refine the ranking results
according to my watching history”); (6) requiring LLM to calculate the similarity between candidate
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items and user preference before recommending items (e.g., “Please rank these candidate movies
after calculating the similarity between them and my movie preferences, according to my watching
history”).

Output Format. This pattern defines the desired format of the LLMs’ output in recommendation
tasks, thereby avoiding invalid output and facilitating accurate evaluation. We provide multiple
output format options tailored to the recommendation task: (1) outputting titles and order numbers,
with each item on a separate line (e.g., “Please only output the ranking results with order numbers.
Split these order numbers with a line break”); (2) outputting the recommendation results with order
numbers without any unnecessary steps in the answer (e.g., “Attention! Just output the ranking
results with order numbers and ignore any unnecessary steps”); (3) answering without explanatory
text (e.g., “Please only output the ranking results with order numbers. Do not explain the reason or
include any other words”); (4) exemplifying the output format [2, 66] (e.g., “Please only output the
ranking results with order numbers. Your output format should be like this: x. movie title, x is the
order number”).

We should emphasize that the presented action set serves as a representative example of personal-
ized prompt optimization in movie recommendations. However, this framework can be generalized
to various recommendation tasks (e.g., rating prediction, item ranking) and domains (e.g., games,
music) through the substitution of task requirements or domain-specific terminology. Moreover,
the current action set can be expanded with additional choices belonging to each pattern. These
demonstrate the flexibility and scalability of the proposed framework.

Refine Actions in RPP+. In addition to RPP, the “refine” block designed for RPP+ can dynamically
refine the selected actions with other LLMs before prompting the LLM-based recommenders during
each iteration, which can automatically enhance the flexibility and quality of the selected actions.
To refine the selected sentence action with LLMs, we use the prompt as “Please refine this sentence
to effectively prompt LLMs for recommendations.” After the “refine” block of RPP+, we obtain a
more polished sentence for prompting compared to that generated by RPP.

3.3 State Space
The state space provides key observations for informing the agent’s actions. An effective state should
include sufficient information about the current environment. Toward this goal, we initialize the
state s0 with user-specific information. Subsequently, at step t, we update state sC with the current
prompt ?C and LLMs’ ranking output >C to include sufficient information about the environment.
We now detail the process of acquiring these states.

Initializing State s0. Since state information after decisions is unavailable initially, we initialize the
state s0 by incorporating users’ personalized features to differentiate between them. Here we set
the user-specific features as user embedding derived from the traditional recommender models
(e.g., LightGCN [13]), which can capture collaborative signals with graphs [57, 59]. Formally, given
the ID information of user u and item i, we obtain their embeddings:

u, i = 5 (D, 8),
s0 = u,

(3)

where u and i denote the representation of user u and item i, respectively, 5 (·) represents the
encoder of traditional recommender models. Based on the personalized information of each user,
RPP/RPP+ makes policy to obtain the initial actions 0 (: )0 and initial prompts ?0.

Updating State sC . To assess the prompt quality and LLMs’ output comprehensively, we view the
current prompt ?C and LLMs’ ranking output >C = [8̂1, · · · , 8̂ 9 , · · · , 8̂" ] from LLMs as the shared state
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of agents, where 8̂ 9 is the jth recommended item in the output list, M is the number of candidates.
To obtain the representation of states at step t, we leverage a pre-trained language model (i.e.,
BERT [6]) and a sequential model (i.e., GRU) to encode ?C and >C , respectively. Formally, we have

e(? )C = ��') (?C ),

e(> )C = �'* (î1, î2, · · · , î" ),

sC = e(? )C + e(> )C , (4)

where î9 denotes the embedding of item 8̂ 9 , e
(? )
C and e(> )C are the representations of prompt ?C and

ranking result >C , respectively.

3.4 Actor-Critic Based Architecture of the Multi-Agent and Reward Function
To personalize each pattern individually with the corresponding agent, the MARL is structured
with four A2C agents [39] under CTDE [33, 52], where each agent has independent parameters
but has access to the global state, as shown in Figure 2. The Actor and Critic of each agent are
two-layer fully connected neural networks parameterized by \ (: )6 and \ (: )

ℎ
, denoted as 6 (: ) (·)

and ℎ (: ) (·), respectively. Specifically, each Actor 6 (: ) (·) makes policy to obtain action 0 (: )C and
its corresponding probability ?A>1 (: )C based on the state sC , while each Critic ℎ (: ) (·) evaluates the
value E (: )C of state sC . Formally, we have

0
(: )
C , ?A>1

(: )
C = 6 (: ) (sC ),

E
(: )
C = ℎ (: ) (sC ). (5)

Since the aim is to boost the recommendation ability of LLMs by personalizing instance-wise
prompts, we leverageNormalized Discounted Cumulative Gain (NDCG) directly as the reward,
which is the performance metric for ranking tasks. Here we adopt #���@" as the reward
evaluated according to the answer of LLMs, where M is the number of candidate items and we set
it as 10 in our experiments. Formally, given the recommendation output >C at step t, we can define
the reward AC as below:

AC = NDCG@M(>C ). (6)

Given the current and future reward AC , AC+1, · · · , AC+= , current and future value E (: )C , · · · , E (: )C+= eval-
uated by the kth Critic, we can define the optimization objectives ! (: )0 and ! (: )2 for Actors and
Critics as follows:

'̂C = AC+1 + WAC+2 + · · · + W=−1AC+= + W=E (: )C+=, (7)

!
(: )
2 =

1
#

∑
C

('̂C−1 − E (: )C ), (8)

!
(: )
0 =

1
#

∑
C

log(?A>1 (: )C ('̂C−1 − E (: )C )), (9)

where W is a discount factor for emphasis on short-term reward while assigning less weight to
long-term reward, '̂C denotes the cumulative sum of future reward.

3.5 Algorithm
The algorithm for our framework is presented in Algorithm 1.
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Algorithm 1: Training RPP for Each Epoch

4 Experiments
In this section, we conduct extensive experiments with three public datasets in RSs to evaluate our
proposed framework RPP/RPP+ on the ranking tasks and answer the following questions:

—RQ1: Can personalizing instance-wise prompts with our framework RPP/RPP+ effectively
enhance the recommendation ability of LLMs?

—RQ2: How well can the framework RPP/RPP+ generalize on diverse types of LLMs?
—RQ3: What’s the respective contribution that each pattern of the framework can make to our
task?

—RQ4: To what extent is the framework sensitive to variations in hyper-parameters?

We evaluate the effectiveness of RPP/RPP+ on LLaMa2-7B-chat, comparing it against various
baselines including traditional recommendermodels, few-shotmethods, and prompt-basedmethods.
Besides, we extend the evaluation on diverse frozen pre-trained LLMs to measure the RPP/RPP+’s
generalization capability. To gain insights into the impact of different patterns in prompts, we
conduct an ablation study on personalizing each pattern. Furthermore, we investigate the sensitivity
of RPP/RPP+ to hyper-parameters. The case study is employed to provide a tangible illustration of
the significance of personalizing prompts in enhancing LLMs’ recommendation ability.

4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on three public datasets for RSs—ML-1M [12], Games

[38], and Lastfm [3]. ML-1M is a widely used movie dataset that contains 1 million ratings given
by users on movies. The Games dataset is a collection of user reviews and ratings for various
video games available on the Amazon platform. The Lastfm dataset contains a rich collection of
user listening histories, including user profiles, artist names, and track names. Following previous
work [16], the reviews or ratings are regarded as interactions. The users and items with fewer
than five interactions are excluded from the analysis. The interactions for each user are organized
sequentially based on their timestamps, arranging the oldest interactions first. The detailed statistics
of the datasets are listed in Table 1.

4.1.2 Baselines. We employ several baseline models for comparison, categorizing them into
three types: (1) traditional recommender models, including Pop, BPRMF [42], LightGCN [13], and
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Table 1. Statistics of Datasets

Dataset #Users #Items #Interactions

ML-1M 6,040 3,885 1,000,210
Games 50,545 16,858 389,718
Lastfm 2,100 17,632 92,835

SASRec [22]; (2) few-shot models, such as BM25 [43], VQ-Rec [14], and UniSRec [15]; (3) prompt
optimization methods, including manual prompts [40, 45], enumeration that is a kind of heuristic
prompts [9, 19, 41], and GRIPS [41].

Traditional Recommender Models. Pop relies on item popularity for recommendations but over-
looks personalization. BPRMF [42] combines Bayesian methods and matrix factorization techniques
to decompose the user-item interaction matrix into a latent factor matrices. LightGCN [13] is a sim-
plified and efficient framework designed for recommendation tasks using Graph Convolutional
Networks (GCNs). SASRec [22] leverages a self-attention encoder to comprehensively analyze the
long-term dependencies present in user behaviors. And it predicts subsequent interactions through
a feed-forward network. They are evaluated on the candidate sets after training on the training
dataset with all interactions following the setting of LLMRank [16].
Few-Shot Methods. BM25 [43] is a versatile information retrieval algorithm that enhances the

accuracy of item ranking by considering item frequency. VQ-Rec [14] suggests an item representa-
tion scheme to acquire Vector-Quantized item representations specifically designed to facilitate
transferable sequential recommendation; UniSRec [15] leverages item description text to acquire
transferable representations, which can be implemented by a lightweight item encoding architec-
ture and two contrastive pre-trained tasks. Following the setting of LLMRank [16], we leverage
their publicly available pre-trained models to evaluate their performance on ranking the candidate
items without training on the target dataset.

Prompt-Based Methods. Manual prompts [40, 45] are prompts designed by humans to guide LLMs’
behavior, relying on human expertise and domain knowledge. Herewemeticulously craft a task-wise
prompt for the ranking tasks, encompassing the key patterns within a prompt. Enumeration entails
automatically searching within several possible prompts and selecting the best one. Here we design
diverse prompts with variations for the ranking tasks, adopting enumeration followed by selection.
GRIPS [41] performs edit operations on prompts automatically for LLMs with gradient-free search.
Here we adapt it as an instance-wise prompting baseline for ranking tasks.

4.1.3 Frozen Pre-Trained LLMs. To evaluate the generalization ability of RPP/RPP+, we extend
the experiments on diverse frozen pre-trained LLMs, including LLaMa2, ChatGPT, and Alpaca.
They serve as the representative LLMs of three types respectively: the open source LLM, which
can be inferred using pre-trained parameters; the black-box LLM, which solely offers an accessible
API; and the fine-tuned LLM, tailored specifically for the recommendation task. LLaMa2 is an open
source LLM released by Meta whose performance has been widely recognized. Here we select the
version of LLaMa2-7B-chat as the frozen LLM. ChatGPT is a black-box LLM, which is excellent
across a wide array of tasks. We conduct experiments by utilizing the API of GPT-3.5-turbo from
OpenAI and set the temperature to 0.2. Alpaca is a lightweight instruction-tuning strategy based
on LLaMa. We select LLama2-7B as the backbone and fine-tune Alpaca with Lora [17], which adds
trainable rank decomposition matrices to each layer of the transformer architecture in the frozen
LLM [1], enabling easier and more efficient fine-tuning. We transform the recommendation data
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for ranking tasks into instruction-tuning data, ensuring that LLMs grasp the specific nuances of
the ranking task. The format of the data for instruction tuning can be articulated as follows:

Data Example for Instruction Tuning

Instruction: “Here is my interaction history: <SeqH1>. There are several candidate items:
<SeqH2>. Please rank these candidate items by measuring the possibilities that I would
like to interact with. Please think step by step. Merely output the ranking results and order
numbers. Split these order numbers with line break.”

Output : <SeqH3>

<SeqH1>, <SeqH2>, and <SeqH3> are the lists of item titles. Subsequently, we employ the
formatted “Instruction” and “Output” as the instruction examples to train Lora on ranking tasks.
Then we view the fine-tuned Alpaca as a frozen LLM to conduct experiments.

4.2 Implementation Details
We configure the initial length of interaction history ;0 as 1 and the number of candidate items to
be" = 10. In our experiments, we set 3, 9, and 5 sentence choices for “role-playing,” “reasoning
guidance,” and “output format” patterns in the action spaces, respectively. Candidate items are
randomly selected from the training dataset and include a ground-truth item sourced from the test
dataset. Therefore, for ranking tasks, the HitRatio@10 metric is always 1, rendering this metric
meaningless. We set the W in the reward as 0.95. To reduce the randomness of LLMs, we set the
temperature as 0.2, since a lower temperature favors more conservative and deterministic outputs.
Besides, we report the average performance with corresponding standard deviations of prompt-
based methods and RPP/RPP+, based on at least five repeated runs. Traditional recommender
models and few-shot-based methods are executed on an NVIDIA RTX 3090Ti, while prompt-based
methods and our framework, based on LLMs, run on an NVIDIA A100. During the training phase,
we randomly select 200 users as training examples to optimize the multi-agent strategy employed
in RPP/RPP+. We terminate the iterative training process if the highest NDCG@10 does not update
over 7 iterations or if the total iterations exceed 15. Subsequently, during the testing phase, the multi-
agent, now equipped with an optimized policy, undergoes evaluation on a separate set of 100/200 test
examples. Our experiments show that on the training set, after three rounds of prompt optimization,
the optimized prompts can achieve superior performance on ChatGPT for most instances, while it
requires two, seven, and eight iterations on the ML-1M, Games, and Lastfm datasets for LLaMa2-
7B-chat, respectively, and approximately eight iterations for Alpaca. Consequently, during the
inference process, we terminate the iterations at the corresponding rounds for different datasets
and LLMs. We only require users’ collaborative embeddings to initialize the state, along with their
interaction history and candidate items as input. To address invalid responses from LLMs, we
carefully design prompts to enforce LLMs’ output format, reducing these occurrences. Additionally,
we trim and pad the LLMs’ recommendations as 10 while processing invalid responses.

4.3 Overall Results (RQ1)
To answer RQ1, we evaluate the effectiveness of our framework on LLaMa2-7B-chat by comparing
the performance of RPP/RPP+with diverse baselines. We adopt the evaluating metrics of NDCG@1,
NDCG@5, and NDCG@10 to access LLMs’ capability in ranking items, the results are listed in
Table 2. Our observations are as follows: (1) Task-wise prompting methods (i.e., manual prompts and
enumeration) exhibit inferior recommendation performance compared to traditional recommender
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Table 2. Performance Comparison of Our Framework on LLaMa2-7B-Chat with Baselines across Diverse
Datasets

Methods ML-1M Games Lastfm

N@1 N@5 N@10 N@1 N@5 N@10 N@1 N@5 N@10

Pop 0.26 0.60 0.63 0.39 0.61 0.67 0.78 0.86 0.88
BPRMF 0.44 0.71 0.74 0.57 0.75 0.78 0.71 0.80 0.84
LightGCN 0.33 0.62 0.65 0.47 0.70 0.73 0.79 0.82 0.88
SASRec 0.68 0.84 0.85 0.69 0.83 0.85 0.81 0.88 0.89
BM25 0.08 0.2 0.43 0.27 0.45 0.57 - - -
UniSRec 0.12 0.35 0.47 0.25 0.45 0.56 - - -
VQ-Rec 0.10 0.33 0.47 0.14 0.33 0.48 - - -
Manual prompts (task-wise) 0.03±0.02 0.35±0.01 0.41±0.01 0.04±0.01 0.30±0.02 0.35±0.02 0.05±0.03 0.39±0.01 0.43±0.01
Enumeration (task-wise) 0.04±0.00 0.36±0.00 0.42±0.01 0.04±0.00 0.34±0.01 0.37±0.01 0.05±0.00 0.40±0.01 0.44±0.02
GRIPS (instance-wise) 0.43±0.01 0.70±0.03 0.73±0.05 0.62±0.04 0.67±0.02 0.72±0.02 0.19±0.03 0.64±0.01 0.66±0.04
RPP (instance-wise) 0.82±0.03 ↑ 0.85±0.03 ↑ 0.87±0.02 ↑ 0.79±0.03 ↑ 0.82±0.03 ↑ 0.85±0.02 ↑ 0.87±0.01 ↑ 0.89±0.01 ↑ 0.91±0.01 ↑
Improvement 0.78 0.49 0.45 0.75 0.48 0.48 0.82 0.49 0.47
Relative improvement (%) 1,950 136 107 1,875 141 130 1,640 123 107
RPP+ (instance-wise) 0.82±0.01 ↑ 0.85±0.00 ↑ 0.87±0.01 ↑ 0.83±0.02 ↑ 0.85±0.01 ↑ 0.86±0.01 ↑ 0.93±0.02 ↑ 0.94±0.01 ↑ 0.95±0.02 ↑
Improvement 0.78 0.49 0.45 0.79 0.51 0.49 0.88 0.54 0.48
Relative improvement (%) 1,950 136 107 1,975 150 132 1,760 135 109

The results of the best-performing baseline are denoted with an underline. The results of our method which outperform
other prompt-based methods are indicated with ↑, while those that surpass the best-performing baseline are highlighted
in red. The performance improvement of RPP/RPP+ compared with the best-performing task-wise prompting method
(i.e., Enumeration) is listed in the “improvement.”

models, few-shot methods, and instance-wise prompting methods (i.e., GRIPS and RPP/RPP+). For
example, the best-performing baseline in traditional recommender models, SASRec, surpasses the
best-performing task-wise prompting method (enumeration) by 0.64, 0.48, and 0.43 in NDCG@1,
NDCG@5, and NDCG@10 metrics, respectively, on the ML-1M dataset. This validates the weakness
of task-wise prompts for LLMs. (2) Instance-wise prompting implemented by RPP/RPP+ makes the
frozen pre-trained LLaMa2-7B-chat surpass traditional recommender models across a variety of
datasets. For instance, RPP demonstrates superior performance compared to the leading baseline
in traditional recommender models (SASRec), achieving improvements of 0.14, 0.01, and 0.02 in
terms of the NDCG@1, NDCG@5, and NDCG@10 metrics on the ML-1M. (3) The framework
of RPP/RPP+ outperforms other instance-wise promoting methods in the ranking tasks, such as
GRIPS. This proves the high quality of prompts generated by RPP/RPP+. We conduct multiple tests
and the minimal standard deviations demonstrate that the performance improvements resulting
from RPP/RPP+ are statistically significant. Additionally, we adopt the MRR@5, MRR@10, and
HitRatio@5 metrics to evaluate the performance of RPP/RPP+ in Table 3, as these are widely used
benchmarks. The results provide valuable insights that highlight the superiority of our method,
which achieves state-of-the-art performance compared to the baselines. These overall results
illustrate that due to the ability to personalize prompts from instance-wise, RPP/RPP+ enables LLMs
to comprehend users’ personalized intents better and provide more accurate recommendations.

4.4 Generalization Ability (RQ2)
To answer RQ2, we extend the evaluation of RPP/RPP+ on diverse frozen LLMs (i.e., LLaMa2-7B-
chat, ChatGPT, and Alpaca) and compare the performance of RPP/RPP+ with other prompt-based
baselines. The results are listed in Table 4. RPP/RPP+ can generalize well on diverse LLMs and
prominently enhance the ranking performance of LLMs. For example, RPP outperforms enumeration
in terms of the NDCG@10 metric on LLaMa-7B-chat, ChatGPT, and fine-tuned Alpaca by 0.48, 0.24,
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Table 3. Additional Metrics Comparison of Our Framework on LLaMa2-7B-Chat with Baselines
across Diverse Datasets, Where “M@” Means MRR Metrics and “H@” Means HitRatio Metrics

Methods ML-1M Games Lastfm

M@5 M@10 H@5 M@5 M@10 H@5 M@5 M@10 H@5

SASRec 0.67 0.78 0.80 0.67 0.76 0.87 0.71 0.75 0.81
Manual prompts (task-wise) 0.24±0.00 0.25±0.01 0.69±0.02 0.29±0.01 0.39±0.02 0.70±0.02 0.27±0.02 0.29±0.02 0.76±0.01
Enumeration (task-wise) 0.28±0.02 0.29±0.03 0.70±0.01 0.38±0.01 0.45±0.01 0.72±0.00 0.31±0.01 0.32±0.00 0.84±0.01
GRIPS (instance-wise) 0.52±0.03 0.54±0.02 0.74±0.02 0.51±0.03 0.52±0.04 0.73±0.02 0.50±0.01 0.51±0.03 0.76±0.02
RPP (instance-wise) 0.80±0.01 ↑ 0.82±0.03↑ 0.86±0.03↑ 0.80±0.02↑ 0.83±0.02↑ 0.84±0.03↑ 0.85±0.01↑ 0.87±0.02↑ 0.87±0.02↑
RPP+ (instance-wise) 0.82±0.02 ↑ 0.83±0.01↑ 0.87±0.00↑ 0.85±0.01↑ 0.86±0.00↑ 0.87±0.01↑ 0.88±0.01↑ 0.89±0.00↑ 0.89±0.01↑

The results of the best-performing baseline are denoted with an underline. The results of our method which
outperform other prompt-based methods are indicated with ↑.

Table 4. Performance of RPP and RPP+ on Diverse Frozen LLMs

Methods ML-1M Games Lastfm

N@1 N@5 N@10 N@1 N@5 N@10 N@1 N@5 N@10

Manual prompts (L) 0.03±0.02 0.35±0.01 0.41±0.01 0.04±0.01 0.30±0.02 0.35±0.02 0.05±0.03 0.39±0.01 0.43±0.01
Enumeration (L) 0.04±0.00 0.36±0.00 0.42±0.01 0.04±0.00 0.34±0.01 0.37±0.01 0.05±0.00 0.40±0.01 0.44±0.02
GRIPS (L) 0.43±0.01 0.70±0.03 0.73±0.05 0.62±0.04 0.67±0.02 0.72±0.02 0.19±0.03 0.64±0.01 0.66±0.04
RPP (L) 0.82±0.03 ↑ 0.85±0.03 ↑ 0.87±0.02 ↑ 0.79±0.03 ↑ 0.82±0.03 ↑ 0.85±0.02 ↑ 0.87±0.01 ↑ 0.89±0.01 ↑ 0.91±0.01 ↑
RPP+ (L) 0.82±0.01 ↑ 0.85±0.00 ↑ 0.87±0.01 ↑ 0.83±0.02 ↑ 0.85±0.01 ↑ 0.86±0.01 ↑ 0.93±0.02 ↑ 0.94±0.01 ↑ 0.95±0.02 ↑
Manual prompts (C) 0.25±0.03 0.53±0.03 0.57±0.03 0.24±0.06 0.46±0.05 0.52±0.05 0.13±0.09 0.41±0.05 0.50±0.06
Enumeration (C) 0.29±0.00 0.55±0.00 0.62±0.01 0.31±0.00 0.50±0.01 0.56±0.02 0.24±0.02 0.47±0.03 0.52±0.02
GRIPS (C) 0.41±0.03 0.55± 0.02 0.65± 0.01 0.25± 0.02 0.55± 0.01 0.62± 0.02 0.41± 0.02 0.64± 0.02 0.69± 0.04
RPP (C) 0.35± 0.04 ↑ 0.58± 0.03 ↑ 0.65± 0.02 ↑ 0.53± 0.02 ↑ 0.67± 0.01 ↑ 0.73± 0.01 ↑ 0.66± 0.02 ↑ 0.83± 0.02 ↑ 0.83± 0.01 ↑
RPP+ (C) 0.38±0.07 ↑ 0.59±0.02 ↑ 0.66±0.01 ↑ 0.59±0.02 ↑ 0.69±0.02 ↑ 0.75±0.01 ↑ 0.67±0.02 ↑ 0.84±0.01 ↑ 0.85±0.01 ↑
Manual prompts (A) 0.04± 0.04 0.24± 0.16 0.34± 0.04 0.09± 0.02 0.34± 0.04 0.43± 0.02 0.06± 0.06 0.29± 0.16 0.40± 0.05
Enumeration (A) 0.06± 0.01 0.30± 0.02 0.37± 0.02 0.14± 0.01 0.39± 0.01 0.43± 0.02 0.12± 0.00 0.38± 0.01 0.44± 0.01
GRIPS (A) 0.06± 0.01 0.63± 0.02 0.65± 0.00 0.02± 0.01 0.60± 0.02 0.63± 0.02 0.19± 0.02 0.68± 0.01 0.70± 0.00
RPP (A) 0.82± 0.1 ↑ 0.92± 0.01 ↑ 0.93± 0.03 ↑ 0.96± 0.00 ↑ 0.96± 0.00 ↑ 0.97± 0.00 ↑ 0.91± 0.03 ↑ 0.91± 0.03 ↑ 0.93±0.01 ↑
RPP+ (A) 0.84± 0.12 ↑ 0.94± 0.05 ↑ 0.94± 0.05 ↑ 0.96± 0.00 ↑ 0.96± 0.01 ↑ 0.97± 0.00 ↑ 0.92± 0.00 ↑ 0.92± 0.00 ↑ 0.92± 0.00 ↑

The results of our framework which outperform other prompt-based baselines are indicated with ↑, and the best-
performing methods are highlighted in red. L, C, and A denote LLMs of LLaMa2-7B-chat, ChatGPT, and Alpaca,
respectively.

and 0.53, respectively, on the Lastfm dataset. The relatively less significant impact on ChatGPT’s
performance might be attributed to its stronger robustness to prompts compared with other LLMs.
The consistent performance improvement across the three types of frozen LLMs demonstrates the
effectiveness and generalization ability of RPP/RPP+.

The results for Q1 and Q2 underscore the importance of instance-wise prompting and the
effectiveness of RPP/RPP+ from a practical standpoint, confirming our viewpoint that personalizing
instance-wise prompts can enhance LLMs’ recommendation ability. Furthermore, dynamically
refining actions during the iterative process can lead to a slight performance improvement of
RPP+ compared to RPP, possibly due to more flexible and higher-quality prompts after refinement.
However, the improvement is not particularly significant ranging from 0.00 to 0.06 and requires
additional computational resources during the LLM refinement process, the tradeoff between
efficiency and performance can be considered when choosing between the RPP and RPP+ in
practice.
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Table 5. Ablation Study on the Respective Impacts of Four Patterns on RPP

Methods ML-1M Games Lastfm

N@1 N@5 N@10 N@1 N@5 N@10 N@1 N@5 N@10

Manual prompts 0.03±0.02 0.35±0.01 0.41±0.01 0.04±0.01 0.30±0.02 0.35±0.02 0.05±0.03 0.39±0.01 0.43±0.01
Enumeration 0.04±0.00 0.36±0.00 0.42±0.01 0.04±0.00 0.34±0.01 0.37±0.01 0.05±0.00 0.40±0.01 0.44±0.02
GRIPS 0.43±0.01 0.70±0.03 0.73±0.05 0.62±0.04 0.67±0.02 0.72±0.02 0.19±0.03 0.64±0.01 0.66±0.04
Role-playing 0.76±0.01 0.80±0.01 0.84±0.01 0.66±0.05 0.72±0.05 0.76±0.04 0.84±0.02 0.87±0.02 0.89±0.02
History records 0.65±0.10 0.72±0.07 0.77±0.06 0.67±0.00 0.71±0.01 0.76±0.00 0.81±0.02 0.85±0.01 0.87±0.01
Reasoning guidance 0.78±0.01 0.81±0.01 0.84±0.00 0.74±0.04 0.78±0.04 0.80±0.04 0.85±0.02 0.88±0.02 0.89±0.02
Output format 0.74±0.00 0.77±0.04 0.82±0.03 0.67±0.02 0.71±0.02 0.76±0.02 0.83±0.03 0.86±0.04 0.89±0.03
RPP 0.82±0.03 0.85±0.03 0.87±0.02 0.79±0.03 0.82±0.03 0.85±0.02 0.87±0.01 0.89±0.01 0.91±0.01

Table 6. Ablation Study on the Respective Impacts of Four Patterns on RPP+

Methods ML-1M Games Lastfm

N@1 N@5 N@10 N@1 N@5 N@10 N@1 N@5 N@10

Manual prompts 0.03±0.02 0.35±0.01 0.41±0.01 0.04±0.01 0.30±0.02 0.35±0.02 0.05±0.03 0.39±0.01 0.43±0.01
Enumeration 0.04±0.00 0.36±0.00 0.42±0.01 0.04±0.00 0.34±0.01 0.37±0.01 0.05±0.00 0.40±0.01 0.44±0.02
GRIPS 0.43±0.01 0.70±0.03 0.73±0.05 0.62±0.04 0.67±0.02 0.72±0.02 0.19±0.03 0.64±0.01 0.66±0.04
Role-playing+ 0.75±0.01 0.82±0.03 0.84±0.01 0.74±0.04 0.79±0.02 0.82±0.04 0.86±0.02 0.89±0.02 0.90±0.01
History records+ 0.67±0.08 0.73±0.06 0.78±0.03 0.66±0.00 0.74±0.01 0.81±0.01 0.79±0.04 0.86±0.01 0.89±0.03
Reasoning guidance+ 0.78±0.01 0.83±0.03 0.85±0.04 0.74±0.05 0.78±0.03 0.81±0.03 0.83±0.02 0.84±0.04 0.88±0.02
Output format+ 0.72±0.01 0.77±0.02 0.80±0.03 0.76±0.04 0.79±0.03 0.80±0.02 0.84±0.05 0.87±0.04 0.91±0.03
RPP+ 0.82±0.01 0.85±0.00 0.87±0.01 0.83±0.02 0.85±0.01 0.86±0.01 0.93±0.02 0.94±0.01 0.95±0.02

4.5 Ablation Study (RQ3)
The ablation study explores the impact of personalizing each pattern (i.e., “role-playing,” “history
records,” “reasoning guidance,” and “output format”) on facilitating LLMs’ recommendation abil-
ity. Specifically, we perform experiments on the frozen LLaMa2-7B-chat with four variations of
RPP/RPP+, where only one pattern in the prompts is personalized by the corresponding agent. As
shown in Tables 5 and 6 and Figure 3, personalizing any of the patterns can enhance the perfor-
mance of LLMs to rank items, and the full framework of RPP/RPP+ attains the highest performance.
Personalizing “reasoning guidance” yields the greatest benefits compared with other patterns,
providing interpretability for recommendations and demonstrating the effectiveness of the per-
sonalized reasoning process in accurately analyzing user preferences. Besides, “role-playing” and
“output format” underscore LLMs’ inherent sensitivity to prompts that modifications to the prompt
expression can lead to LLMs’ better output. The “history records” confirms the impact of users’
short or long-term interaction history on recommendations. This emphasizes that decomposing
the prompt into four patterns and individually tailoring them can contribute to LLMs’ recommen-
dations. Furthermore, as some recommendation tasks focus on user modeling, we define a new
pattern called “user profile” and conduct experiments to evaluate the effectiveness of RPP/RPP+
in personalizing this pattern using the ML-1M dataset. We utilize users’ profile features, such
as gender, age, and occupation, as potential actions for the agent, which can choose whether to
include each feature in the prompts. As shown in Table 7, personalizing the user profile leads to
performance improvements compared with prompt-based baselines, highlighting the effectiveness
of designating “user profile” as a distinct pattern and the advantages of personalizing prompts with
RPP/RPP+.

To validate the design of “GRU” in Equation (4), we conduct ablation experiments to replace
“GRU” as “mean pooling.” As presented in Table 8, the performance of “RPP-pool” is worse than
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Table 7. Additional Experiments for the Pattern of “User Profile”

Methods ML-1M

N@1 N@5 N@10

Manual prompts (task-wise) 0.05±0.01 0.41±0.02 0.46±0.01
Enumeration (task-wise) 0.16±0.00 0.48±0.02 0.51±0.02
GRIPS (instance-wise) 0.63±0.01 0.72±0.02 0.77±0.00
User profile (instance-wise) 0.78±0.01 ↑ 0.79±0.03↑ 0.82±0.03↑
RPP (instance-wise) 0.83±0.02 ↑ 0.83±0.01↑ 0.88±0.01↑
RPP+ (instance-wise) 0.83±0.00 ↑ 0.84±0.01↑ 0.89±0.00↑

Fig. 3. The performance comparison between prompt-based methods and RPP/RPP+ with different patterns.
“Manual,” “Enum,” and “GRIPS” represent the baseline prompt-based methods. “RPP-Ro,” “RPP-Hi,” “RPP-Re,”
and “RPP-Ou” are the four variations of RPP/RPP+ on “role-playing,” “history records,” “reasoning guidance,”
and “output format” patterns, respectively.

Table 8. Ablation Study on the Impact of GRU

Methods ML-1M Games Lastfm

N@1 N@5 N@10 N@1 N@5 N@10 N@1 N@5 N@10

Manual prompts 0.03±0.02 0.35±0.01 0.41±0.01 0.04±0.01 0.30±0.02 0.35±0.02 0.05±0.03 0.39±0.01 0.43±0.01
Enumeration 0.04±0.00 0.36±0.00 0.42±0.01 0.04±0.00 0.34±0.01 0.37±0.01 0.05±0.00 0.40±0.01 0.44±0.02
GRIPS 0.43±0.01 0.70±0.03 0.73±0.05 0.62±0.04 0.67±0.02 0.72±0.02 0.19±0.03 0.64±0.01 0.66±0.04
RPP-pool 0.80±0.00 0.84±0.01 0.86±0.02 0.76±0.03 0.79±0.00 0.81±0.02 0.90±0.01 0.92±0.01 0.93±0.00
RPP-Bert 0.82±0.01 0.85±0.00 0.87±0.01 0.83±0.02 0.85±0.01 0.86±0.01 0.93±0.02 0.94±0.01 0.95±0.02

that of “RPP-Bert,” which validates the effectiveness of the “GRU” module since it can catch the
sequential information of ranking results. Additionally, to evaluate the effectiveness of MARL
which can personalize different patterns with different expertise from different agents, we utilize
a single agent which is designed as PPO. The results are demonstrated in Figure 6(a), where the
PPO-1 uses a single PPO to personalize the entire prompts without dividing them into four patterns,
while PPO-4 personalizes the four patterns uniformly with one PPO. The superior performance of
RPP compared to PPO-1 and PPO-4 highlights the need for multiple agents to personalize each of
the four patterns respectively.
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Fig. 4. Sensitivity to the number of training examples, which demonstrates the changes in RPP/RPP+’s
performance on three datasets as the number of training examples increases from 100 to 500.

Fig. 5. Sensitivity to the number of candidate items, which indicates the drop in performance of LLM-based
methods as the number of candidate items increases.

4.6 Sensitivity Analysis (RQ4)
We investigate the effect of the number of training examples (users) on RPP/RPP+ with LLaMa2-
7B-chat in Figure 4. As the number of training examples increases from 100 to 500, the performance
of RPP/RPP+ initially improves and subsequently stabilizes. Considering both the performance and
resource consumption, we set the number of training examples as 200. Additionally, we explore
the sensitivity of RPP/RPP+ to the number of candidate items within the range of {5, 10, 15, 20} in
Figure 5. Observing the curves corresponding to the task-wise promptingmethod (e.g., enumeration)
and our framework RPP/RPP+, the ranking performance of LLMs drops as the number of candidate
items increases, which can be attributed to the limitation of LLMs in processing long inputs.
However, the capability of RPP/RPP+ to enhance the recommendation performance of LLMs is
robust since the gap between the curves of RPP/RPP+ and Enumeration remains stable. This
observation highlights the effectiveness and stability of personalizing instance-wise prompts rather
than solely relying on task-wise prompts.

Furthermore, to evaluate the impacts of different numbers of sentences under each pattern, we
conduct experiments for the four patterns with results presented in Figure 6(b). The curves rise
initially and then stabilize, demonstrating that when the sentence actions encompass a sufficient
range of perspectives for each pattern, the performance of prompt personalization can be sustained
at a high level.
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Fig. 6. (a) The performance comparison between MARL and a single PPO for personalizing prompts. (b)
Demonstrates RPP/RPP+’s sensitivity to the number of actions under each pattern.

4.7 Case Study
Through the case study presented in Figures 7–10, we provide an intuitive demonstration of how
variations in these prompts impact the ranking results. For the user in Figure 7, personalizing the
“role-playing” pattern from “You are a movie expert” to “ You are a movie ranker to match user’s
interest” results in a higher ranking of the ground truth item that the user interacts with next. This
illustrates that assigning LLMs as movie rankers to analyze users’ preferences can lead to more
precise recommendations for this user. By personalizing the “history record” pattern from five
interaction records to two historical records, the ranking results become more precise for the user in
Figure 8. This demonstrates that considering a shorter-term interaction history is more effective in
capturing his preferences than a long-term one. For the user in Figure 9, personalizing the “reasoning
guidance” pattern from “think step by step” to “update the film preferences before ranking” leads to
better recommendations, proving that utilizing LLMs’ refinement and update mechanism is more
reasonable than deducing without specific instructions for him. Moreover, personalizing the “output
format” pattern from “giving the output format example” to “answering without any unnecessary
steps” makes it easier for LLMs to understand the instructions and recommend for the user in
Figure 10. We can observe that due to LLMs’ sensitivity to prompts and users’ inner differences,
personalizing prompts for each user enables LLMs to generate recommendation results that better
satisfy the users, with the ground truth prioritized. Furthermore, we visualize the distribution of
users across different patterns under our experiments’ setting to illustrate user diversity vividly,
as depicted in Figures 11–14, underscoring the necessity of personalizing each pattern in the
prompts for different users. This further validates the significance of instance-wise prompting for
recommendation tasks and the effectiveness of our framework.

4.8 Timing and Computational Complexity Analysis
Compared to directly applying fixed prompts, the streamlined architecture of MARL, with parame-
ters negligible relative to LLMs, incurs minimal additional computational and time costs. When
customizing the prompt for each user, compared with heuristical crafting methods like enumeration
or token-level optimization approaches like RLPrompt [5] and AutoPrompt [48], the sentence-level
optimization can improve searching efficiency and obtain optimal prompts with minimal iterations,
thus reducing timing and computational complexity. However, the multi-round iteration with LLMs
is still required since achieving the desired prompt in a single step with MARL is challenging.
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Fig. 7. The case study on “role-playing” patterns. Variations of prompt pairs are marked green, the candidate
items are marked blue, and the ground truth is marked red.

Fig. 8. The case study on “history records” patterns. Variations of prompt pairs are marked green, the
candidate items are marked blue, and the ground truth is marked red.

Formally, let N denote the number of users, L denote the length of a prompt, D denote the possible
tokens, and S denote the limited actions. RPP/RPP+ reduces the timing and computational com-
plexity of designing prompts from $ (#!�) to $ (#(). Our experiments reveal that ChatGPT can
complete prompt optimization in approximately three rounds, whereas LLaMa2-7B-chat requires
two, seven, and eight iterations on three distinct datasets (i.e., ML-1M, Games, and Lastfm), and
Alpaca takes around eight iterations. The timing and computational complexity are acceptable
for achieving significant performance improvements. It reveals that RPP and RPP+ can achieve a
balance between prompt quality and resource efficiency.
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Fig. 9. The case study on “reasoning guidance” patterns. Variations of prompt pairs are marked green, the
candidate items are marked blue, and the ground truth is marked red.

Fig. 10. The case study on “output format” patterns. Variations of prompt pairs are marked green, the
candidate items are marked blue, and the ground truth is marked red.

5 Related Work
Here, we provide a review regarding LLMs for RSs, prompt sensitivity of LLMs, and discrete prompt
engineering.

5.1 LLMs for RSs
Recently, LLMs have demonstrated remarkable capabilities in instruction following and intent
reasoning, drawing researchers’ attention to using LLMs as RSs [8, 36, 57, 58] which can capture
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Fig. 11. The user distribution on personalized “role-playing” pattern, with three sectors representing the three
expressions for this pattern.

Fig. 12. The user distribution on personalized “history records” pattern, with each sector representing varied
interaction history length.

Fig. 13. The user distribution on personalized “reasoning guidance” pattern, with nine sectors representing
the nine expressions for this pattern.

user preference and recommend for them. Conceptualizing LLMs as RSs to generate recommen-
dations relies heavily on the quality of the prompts designed. Tailoring prompts of LLMs for the
recommendation tasks has been explored by recent research. InstructRec [62] develops a general
instruction format that contains users’ preferences, intentions, task requirements, and contextual
information. Chat-REC [10] recasts user profiles and prior interactions into prompts, enhancing
the interactivity and explainability of the recommendation process. LLM4RS [4] designs domain-
specific prompt format to analyze ChatGPT’s recommendation ability on all three ranking policies,
including point-wise, pairwise, and list-wise ranking. Instead of designing a common prompt
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Fig. 14. The user distribution on personalized “output format” pattern, with five sectors representing the five
expressions for this pattern.

format for the specific recommendation task, we personalize instance-wise prompt for each user to
explore users’ different preferences. Though existing studies [51, 55, 61] have explored optimizing
prompts for users, they may be limited in their reliance on LLMs to refine or partial optimization
from limited perspectives. For example, PepRec [61] refines the initial prompts by incorporating
interactions from similar users in the same cluster iteratively. Re2LLM [55] and ISR [51] correct
LLMs’ recommendation errors through self-reflection and reasoning. Different from them, our
method decomposes the completed prompt into multiple key patterns and optimizes each pattern
comprehensively with RL.

5.2 Prompt Sensitivity of LLMs
Recent studies [34] have examined the sensitivity of LLMs to prompts that even minor variations
in prompts can lead to significantly different outputs, indicating that the one-size-fits-all prompt
may not generalize well [26, 37, 50] for different inputs. For example, KATE [31] confirmed that the
number and order of in-context examples can influence the output of LLMs. Besides, variations in
prompt formats within task descriptions may result in LLMs interpreting input instances differently,
consequently influencing the outcomes [66]. These studies underscore the importance of optimizing
prompts for specific inputs to enhance the performance of LLMs. Fixed prompt templates that
assume uniformity across all samples in a task, regardless of their varying difficulty, may impair
LLMs’ abilities due to a lack of instance-specific knowledge [18]. To address the difference in inputs,
recent research has proposed instance-level prompt optimization [20], which involves rewriting
the prompt for each input to better leverage the LLM’s capabilities for specific instances. IPL [20]
assumed that each learnable prompt token contributes differently to various instances, which can
be learned by calculating relevance scores. To meet the specific demands for personalization in
recommendation tasks, we enhance LLMs’ personalized recommendations by leveraging instance-
wise prompts and introducing a method to optimize these prompts using MARL.

5.3 Discrete Prompt Engineering
Several approaches have explored prompt engineering in continuous and discrete space to obtain
better answers from LLMs. Since the prompts for recent LLMs (ChatGPT, LLaMa2) are discrete
and hard prompts, our work is strongly related to the discrete prompts engineering. Prior works
have attempted to construct discrete prompts manually [40] or by heuristic [19], which are limited
by human effort or resource consumption. Recent research has explored constructing prompts
automatically. For instance, prompt retrieval [44] leverages annotated data and a language model,
training a compact retriever to retrieve prompts based on input-output pairs. AutoPrompt [48]
utilizes gradient-guided search to identify the optimal tokens within the prompt, although these
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prompts are typically not human-interpretable. RLPrompt [5] introduces a framework based on RL
to generate prompts iteratively word-by-word from the vast vocabulary. An important distinction
between our method and the existing methods is that we decompose the completed prompt into
multiple key patterns, optimizing each pattern and concatenating them, which can enhance the
efficiency of optimization and ensure the quality of prompts. To the best of our knowledge, our
work is the first to explore instance-wise prompting in the domain of RSs.

6 Potential Application and Limitations
In real-world applications, after the initial coarse ranking process, RPP/RPP+ can be utilized in the
fine-ranking stage to deliver highly relevant and personalized recommendation results to users
based on their preferences and interests. By employing personalized prompts, LLMs can conduct
more refined ranking, leading to a more accurate understanding of users’ underlying preferences.
Additionally, the personalized interaction history length can capture the dynamic changes in users’
interests within sequence recommendation scenarios. Furthermore, the personalized reasoning
process, as realized by the pattern of “recipe,” can improve the interpretability of recommendations.

While the proposed RPP/RPP+ framework presents an efficient solution for personalizing
instance-wise prompts for recommendation, it is accompanied by certain limitations. A notable
limitation is its partial reliance on manual intervention when designing the action set in the initial
setup phase. This suggests a potential area for future research to develop more autonomous and
adaptive methods. Another limitation is the efficiency of RPP/RPP+ in narrowing the search space
through iterative updates, which necessitates a certain level of computational resources. In the
future, we will explore a more efficient method for prompt personalization, preferably without
relying on LLMs in the iterations.

7 Conclusion
In this article, we propose instance-wise prompting to personalize prompts for individual users in
recommendation tasks. To solve this task, we introduce a new framework, RPP/RPP+, personalizing
essential patterns respectively with multi-agent and then concatenating them into a personalized
prompt. We optimize the prompts at the sentence level and carefully design the expressions for each
pattern, enhancing search efficiency and ensuring prompt quality. Experimental results validate
the superiority of RPP/RPP+ over several traditional recommender models, few-shot methods, and
prompt-based methods in ranking tasks, demonstrating the potential of personalizing instance-wise
prompts.
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